Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first: Chinese scientists create pig stem cells

05.06.2009
Discovery has far-reaching implications for animal and human health

Scientists have managed to induce cells from pigs to transform into pluripotent stem cells – cells that, like embryonic stem cells, are capable of developing into any type of cell in the body.

It is the first time in the world that this has been achieved using somatic cells (cells that are not sperm or egg cells) from any animal with hooves (known as ungulates).

The implications of this achievement are far-reaching; the research could open the way to creating models for human genetic diseases, genetically engineering animals for organ transplants for humans, and for developing pigs that are resistant to diseases such as swine flu.

The work is the first research paper to be published online today (Wednesday 3 June) in the newly launched Journal of Molecular Cell Biology [1].

Dr Lei Xiao, who led the research, said: "To date, many efforts have been made to establish ungulate pluripotent embryonic stem cells from early embryos without success. This is the first report in the world of the creation of domesticated ungulate pluripotent stem cells. Therefore, it is entirely new, very important and has a number of applications for both human and animal health."

Dr Xiao, who heads the stem cell lab at the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China), and colleagues succeeded in generating induced pluripotent stem cells by using transcription factors to reprogramme cells taken from a pig's ear and bone marrow. After the cocktail of reprogramming factors had been introduced into the cells via a virus, the cells changed and developed in the laboratory into colonies of embryonic-like stem cells. Further tests confirmed that they were, in fact, stem cells capable of differentiating into the cell types that make up the three layers in an embryo – endoderm, mesoderm and ectoderm – a quality that all embryonic stem cells have. The information gained from successfully inducing pluripotent stem cells (iPS cells) means that it will be much easier for researchers to go on to develop embryonic stem cells (ES cells) that originate from pig or other ungulate embryos.

Dr Xiao said: "Pig pluripotent stem cells would be useful in a number of ways, such as precisely engineering transgenic animals for organ transplantation therapies. The pig species is significantly similar to humans in its form and function, and the organ dimensions are largely similar to human organs. We could use embryonic stem cells or induced stem cells to modify the immune-related genes in the pig to make the pig organ compatible to the human immune system. Then we could use these pigs as organ donors to provide organs for patients that won't trigger an adverse reaction from the patient's own immune system.

"Pig pluripotent stem cell lines could also be used to create models for human genetic diseases. Many human diseases, such as diabetes, are caused by a disorder of gene expression. We could modify the pig gene in the stem cells and generate pigs carrying the same gene disorder so that they would have a similar syndrome to that seen in human patients. Then it would be possible to use the pig model to develop therapies to treat the disease.

"To combat swine flu, for instance, we could make a precise, gene-modified pig to improve the animal's resistance to the disease. We would do this by first, finding a gene that has anti-swine flu activity, or inhibits the proliferation of the swine flu virus; second, we can introduce this gene to the pig via pluripotent stem cells – a process known as gene 'knock-in'. Alternatively, because the swine flu virus needs to bind with a receptor on the cell membrane of the pig to enter the cells and proliferate, we could knock out this receptor in the pig via gene targeting in the pig induced pluripotent stem cell. If the receptor is missing, the virus will not infect the pig."

In addition to medical applications for pigs and humans, Dr Xiao said his discovery could be used to improve animal farming, not only by making the pigs healthier, but also by modifying the growth-related genes to change and improve the way the pigs grow.

However, Dr Xiao warned that it could take several years before some of the potential medical applications of his research could be used in the clinic.

The next stage of his research is to use the pig iPS cells to generate gene-modified pigs that could provide organs for patients, improve the pig species or be used for disease resistance. The modified animals would be either "knock in" pigs where the iPS or ES cells have been used to transfer an additional bit of genetic material (such as a piece of human DNA) into the pig's genome, or "knock out" pigs where the technology is used to prevent a particular gene functioning.

Commenting on the study, the journal's editor-in-chief, Professor Dangsheng Li, said: "This research is very exciting because it represents the first rigorous demonstration of the establishment of pluripotent stem cell in ungulate species, which will open up interesting opportunities for creating precise, gene-modified animals for research, therapeutic and agricultural purposes."

[1] Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology. doi:10.1093/jmcb/jmp003

Emma Mason | EurekAlert!
Further information:
http://www.oxfordjournals.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>