Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's Toughest Bacterium Holds Promise for Rapid Vaccine Development Against Deadly Diseases

19.07.2012
Scientists from the Uniformed Services University of the Health Sciences (USU) have developed a new preparation method that renders a virus or bacterium non-infectious while preserving its immune-boosting ability after exposure to gamma radiation.

A lethally irradiated vaccine was successfully tested in mice against drug-resistant Staphylococcus aureus bacteria by colleagues at the National Institutes of Health (NIH), and holds promise for other such deadly diseases.

High doses of radiation typically destroy a pathogen’s genome, rendering it unable to cause infection when used in a vaccine. However, radiation also damages a microbe’s protein epitopes, which the immune system must recognize for a vaccine to be protective. Organisms inactivated, or killed, by radiation trigger better immune responses than those inactivated by traditional heat or chemical methods. Although live vaccines may provide better immune protection than irradiated vaccines, live vaccines are frequently not an option as they can carry an unacceptable risk of infection with an otherwise untreatable disease (e.g., HIV). Lethally irradiated vaccines could also help the developing world, where the need for cold storage limits the availability of live vaccines.

To separate genome destruction from epitope survival, the researchers borrowed some complex chemistry from the world’s toughest bacterium Deinococcus radiodurans, nicknamed “Conan the Bacterium,” which can withstand 3,000 times the radiation levels that would kill a human being. In 2000, Deinococcus was engineered for cleanup of highly radioactive wastes left over from the production of atomic bombs. Now, unusual Mn(II)-antioxidants discovered in this extremophile have been successfully applied to preparing irradiated vaccines.

Deinococcus accumulates high concentrations of manganese and peptides, which the scientists combined in the laboratory —forming a potent antioxidant complex which specifically protects proteins from radiation. They found that the complex preserves immune-related epitopes when applied to viruses and bacteria during exposure to gamma radiation, but did not protect their genomes.

Michael J. Daly, Ph.D., and his research team from USU collaborated on the work with Sandip K. Datta, M.D., and colleagues at NIH’s National Institute of Allergy and Infectious Diseases (NIAID).

The scientists used the Mn-peptide complex in a laboratory setting to successfully protect from radiation damage the protein epitopes of Venezuelan equine encephalitis virus, a microbe that causes a mosquito-borne disease of the nervous system. They also used the preparation method to develop an effective vaccine against methicillin-resistant S. aureus (MRSA) infections in mice.

The researchers believe the whole-microbe vaccine approach could extend to any infectious organism that can be cultivated, whether fungi, parasites, protozoa, viruses or bacteria—including agents that mutate rapidly, such as pandemic influenza and HIV. The groups aim to demonstrate this method of irradiation as a rapid, cost-effective approach to vaccine development.

The project was funded by the Air Force Office of Scientific Research (AFOSR) and the intramural research program of the NIAID. For more information on Deinococcus research, visit

http://www.usuhs.mil/pat/deinococcus/index_20.htm. For information on AFOSR, contact Dr. Hugh DeLong (hugh.delong@afosr.af.mil).

ARTICLE:
The results of the breakthrough study titled "Preserving Immunogenicity of Lethally Irradiated Viral and Bacterial Vaccine Epitopes Using a Radio-Protective Mn2+-Peptide Complex from Deinococcus" will be published in the July edition of Cell Host and Microbe.
WHO:
Michael J. Daly, Ph.D., Professor, Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, is the study lead author. He has devoted 20 years to studying Deinococcus radiodurans, which has led to three patents for his work.

Sandip K. Datta, M.D., Lead Clinical Investigator, Bacterial Pathogenesis Unit, NIAID Laboratory of Clinical Infectious Diseases. Dr. Datta is an expert in immune responses against bacteria and vaccines.

CONTACT:
To schedule interviews with Dr. Daly, please contact Sharon Willis, (301)295-1219, Sharon.willis@usuhs.edu, or Gwendolyn Smalls, (301) 295-3981, Gwendolyn.smalls@usuhs.edu.

The Uniformed Services University of the Health Sciences (USU) is the nation’s federal health sciences university. USU students are primarily active duty uniformed officers in the Army, Navy, Air Force and Public Health Service who have received specialized education and training in tropical and infectious diseases, preventive medicine, the neurosciences (to include TBI and PTSD), disaster response and humanitarian assistance, and acute trauma care. A large percentage of the university’s more than 4,800 physician and 600 advanced practice nursing alumni are also supporting operations in Afghanistan and elsewhere, offering their leadership and expertise. USU also has graduate programs in biomedical sciences and public health, open to civilian and military applicants committed to excellence in research.

Sharon Willis | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>