Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's Toughest Bacterium Holds Promise for Rapid Vaccine Development Against Deadly Diseases

19.07.2012
Scientists from the Uniformed Services University of the Health Sciences (USU) have developed a new preparation method that renders a virus or bacterium non-infectious while preserving its immune-boosting ability after exposure to gamma radiation.

A lethally irradiated vaccine was successfully tested in mice against drug-resistant Staphylococcus aureus bacteria by colleagues at the National Institutes of Health (NIH), and holds promise for other such deadly diseases.

High doses of radiation typically destroy a pathogen’s genome, rendering it unable to cause infection when used in a vaccine. However, radiation also damages a microbe’s protein epitopes, which the immune system must recognize for a vaccine to be protective. Organisms inactivated, or killed, by radiation trigger better immune responses than those inactivated by traditional heat or chemical methods. Although live vaccines may provide better immune protection than irradiated vaccines, live vaccines are frequently not an option as they can carry an unacceptable risk of infection with an otherwise untreatable disease (e.g., HIV). Lethally irradiated vaccines could also help the developing world, where the need for cold storage limits the availability of live vaccines.

To separate genome destruction from epitope survival, the researchers borrowed some complex chemistry from the world’s toughest bacterium Deinococcus radiodurans, nicknamed “Conan the Bacterium,” which can withstand 3,000 times the radiation levels that would kill a human being. In 2000, Deinococcus was engineered for cleanup of highly radioactive wastes left over from the production of atomic bombs. Now, unusual Mn(II)-antioxidants discovered in this extremophile have been successfully applied to preparing irradiated vaccines.

Deinococcus accumulates high concentrations of manganese and peptides, which the scientists combined in the laboratory —forming a potent antioxidant complex which specifically protects proteins from radiation. They found that the complex preserves immune-related epitopes when applied to viruses and bacteria during exposure to gamma radiation, but did not protect their genomes.

Michael J. Daly, Ph.D., and his research team from USU collaborated on the work with Sandip K. Datta, M.D., and colleagues at NIH’s National Institute of Allergy and Infectious Diseases (NIAID).

The scientists used the Mn-peptide complex in a laboratory setting to successfully protect from radiation damage the protein epitopes of Venezuelan equine encephalitis virus, a microbe that causes a mosquito-borne disease of the nervous system. They also used the preparation method to develop an effective vaccine against methicillin-resistant S. aureus (MRSA) infections in mice.

The researchers believe the whole-microbe vaccine approach could extend to any infectious organism that can be cultivated, whether fungi, parasites, protozoa, viruses or bacteria—including agents that mutate rapidly, such as pandemic influenza and HIV. The groups aim to demonstrate this method of irradiation as a rapid, cost-effective approach to vaccine development.

The project was funded by the Air Force Office of Scientific Research (AFOSR) and the intramural research program of the NIAID. For more information on Deinococcus research, visit

http://www.usuhs.mil/pat/deinococcus/index_20.htm. For information on AFOSR, contact Dr. Hugh DeLong (hugh.delong@afosr.af.mil).

ARTICLE:
The results of the breakthrough study titled "Preserving Immunogenicity of Lethally Irradiated Viral and Bacterial Vaccine Epitopes Using a Radio-Protective Mn2+-Peptide Complex from Deinococcus" will be published in the July edition of Cell Host and Microbe.
WHO:
Michael J. Daly, Ph.D., Professor, Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, is the study lead author. He has devoted 20 years to studying Deinococcus radiodurans, which has led to three patents for his work.

Sandip K. Datta, M.D., Lead Clinical Investigator, Bacterial Pathogenesis Unit, NIAID Laboratory of Clinical Infectious Diseases. Dr. Datta is an expert in immune responses against bacteria and vaccines.

CONTACT:
To schedule interviews with Dr. Daly, please contact Sharon Willis, (301)295-1219, Sharon.willis@usuhs.edu, or Gwendolyn Smalls, (301) 295-3981, Gwendolyn.smalls@usuhs.edu.

The Uniformed Services University of the Health Sciences (USU) is the nation’s federal health sciences university. USU students are primarily active duty uniformed officers in the Army, Navy, Air Force and Public Health Service who have received specialized education and training in tropical and infectious diseases, preventive medicine, the neurosciences (to include TBI and PTSD), disaster response and humanitarian assistance, and acute trauma care. A large percentage of the university’s more than 4,800 physician and 600 advanced practice nursing alumni are also supporting operations in Afghanistan and elsewhere, offering their leadership and expertise. USU also has graduate programs in biomedical sciences and public health, open to civilian and military applicants committed to excellence in research.

Sharon Willis | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>