Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worker Wasps Grow Visual Brains, Queens Stay in the Dark

07.01.2014
A queen in a paperwasp colony largely stays in the dark. The worker wasps, who fly outside to seek food and building materials, see much more of the world around them.

A new study indicates that the brain regions involved in sensory perception also develop differently in these castes, according to the different behavioral reliance on the senses. The study is published in Behavioral Ecology and Sociobiology.


A colony of paperwasps, Apoica pallens

“The wasps in different castes within a colony don’t differ much genetically. The differences we see show the signature of the environment on brain development,” said Sean O’Donnell, PhD, a professor in Drexel University’s College of Arts and Sciences who led the study. O’Donnell’s team found that the queen wasps had smaller brain regions for processing visual information than the workers in their own colonies. The pattern held across most of the 12 species of paperwasps they studied.

Most other research in how animals’ environments affect their nervous systems – known as neuroecology – emphasizes comparisons between the brains of different species with diverse lifestyles and behaviors, such as comparisons between nocturnal and diurnal species of birds or bats.

“The strong behavioral and ecological differences between individuals within insect colonies make them powerful tools for studying how individual brain differences come about, and their functional significance,” O’Donnell said.

To test how queen-worker brain differences come about, O’Donnell’s team also compared differences in queen and worker wasps’ brain development across different wasp species they studied. In species where adult wasps fight for the queen position, it would make sense for the caste brain differences to be less pronounced than in species where adult wasps emerge with their caste roles already established – if brain development followed a preordained program for each assigned role.

Instead, the researchers found larger differences between worker and queen wasp brains in species where adult wasps fought for dominance – a finding that suggests brain plasticity, or development in adulthood in response to environmental and behavioral needs. O’Donnell noted that sampling juvenile wasps at multiple stages of brain development would help confirm the finding suggested by his study that only looked at adult wasp brains.

News Media Contact
Rachel Ewing
News Officer, University Communications
raewing@drexel.edu
Phone: 215-895-2614
Mobile: 215-298-4600

Rachel Ewing | EurekAlert!
Further information:
http://ww.drexel.edu
http://www.drexel.edu/now/news-media/releases/archive/2014/January/Wasp-Castes-Sensory-Brain-Structures/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>