Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Work with Fungus Uncovering Keys to DNA Methylation

Researchers in a University of Oregon lab have shed more light on the mechanism that regulates DNA methylation, a fundamental biological process in which a methyl group is attached to DNA, the genetic material in cells of living organisms.

DNA methylation is essential for normal growth and development in plants and animals. It has been implicated in long-term memory, and irregularities in its process are associated with diseases such as cancer.

In the UO's Institute of Molecular Biology, Eric U. Selker and members of his laboratory use a quickly reproducing and easy-to-manipulate fungus, Neurospora crassa, to explore the control of DNA methylation. Neurospora is considered the simplest model organism for such research.

Reporting in the Dec. 15 issue of the journal Genes & Development, Selker and Keyur K. Adhvaryu, a postdoctoral researcher in the Selker lab, document that the enzyme protein phosphatase PP1 is necessary for normal methylation of DNA.

In the nucleus of eukaryotic cells, DNA is wrapped around histone proteins to form chromatin, and one histone, H3, turns out to be critical for DNA methylation. "It was long thought that histones were simply structural proteins, but we are learning that these proteins are also informational," Selker said.

This was demonstrated in the journal Nature in 2001 by Selker and his former postdoctoral research associate Hisashi Tamaru. They found that a protein required for DNA methylation, DIM-5, is an enzyme that adds a methyl group onto lysine 9 of histone H3. "This was the first solid indication that chromatin is important for DNA methylation," Selker said.

The new paper by Adhvaryu and Selker shows that PP1 is important to remove phosphates attached to serine 10 of H3, the site immediately adjacent to the site that DIM-5 needs to methylate, leading to DNA methylation.

In an accompanying article in the same issue of Genes & Development, Wolfgang Fischle, a biochemist at the Max-Planck Institute for Biophysical Chemistry, praises the findings of Selker and Adhvaryu. He writes that there appears to be extensive "crosstalk" involved in the chemical modifications that occur on histones to influence other enzymes that interact with chromatin "Adhvaryu and Selker provide novel insights into an intricate regulatory network involving histone phosphorylation, histone methylation and DNA methylation," he noted.

"DNA methylation seems to be a luxury item in Neurospora, which means we can manipulate it as we wish, making mutants that don't do it and thereby identify important players," Selker said. "We are identifying how DNA methylation is controlled and what it does in this organism. Our assumption is that a lot of what we find in Neurospora will be applicable to other systems."

In this case, Selker said, Keyur demonstrated very nicely, in a couple different ways, that protein phosphatase PP1 is required for normal DNA methylation. "DNA methylation is involved in a silencing of invasive DNA as well as a variety of normal genes, including those on the inactive X chromosome, those subjected to imprinting, and well as tumor suppressor genes," he said, adding that methylation of the latter class of genes can lead to cancer.

The research was funded by a grant from the National Institutes of Health to Selker and in part by an American Heart Association fellowship to Adhvaryu.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Source: Eric Selker, professor of biology, 541-346-5197,

Links: Selker faculty Web page:; UO department of biology:

Jim Barlow | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>