Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get to Work, Enzymes!

08.04.2013
High yield: Cell-free enzyme cascade makes hydrogen from xylose

Fuel cells are a highly promising means of producing electricity. However, the hydrogen they require is still largely obtained from coal, oil, or natural gas. Producing hydrogen from less expensive biomass is an attractive alternative, but has not produced sufficient yields to date.

In the journal Angewandte Chemie, a team of American and Mexican researchers has now introduced a cell-free biosystem of thirteen enzymes that can produce hydrogen from xylose, one of the main components of plants, in yields of over 95 %.

Xylose is a pentose (a sugar molecule containing five carbon atoms), and is one of the main building blocks of lignocellulosic biomass—wood and parts of woody plants. It is not economically feasible to separate xylose from the other components of biomass for the production of hydrogen. There are microorganisms that can convert xylose and glucose, the building block that makes up cellulose, into hydrogen. However, the yields are very low.

Y.-H. Percival Zhang at Virginia Tech (Blacksburg, USA) and his co-workers in the USA and Mexico have thus resorted to a trick: They are using the enzymes used by the microorganisms, but in a cell-free system. They combined thirteen enzymes and various cofactors like NADPH into a complex cascade that do not exist in the natural metabolic systems. In a bioreactor, they were able to produce hydrogen from xylose with a yield of over 95 %.

The downside: In the first step of the reaction, xylose is isomerized into xylulose, which must be activated in a second step by addition of a phosphate group. This requires ATP (adenosine triphosphate), the "energy carrier" of cells, to "pump" chemical energy into the enzyme cascade. Unfortunately, ATP is a very expensive material. The thing that depends on ATP is the splitting of the energy-rich bonds between individual phosphate groups. The researchers thus had an idea: They wanted to replace the ATP with a more economical substance, polyphosphate, which also contains energetic phosphate bonds. However, this requires a xylulokinase, an enzyme that attaches phosphate groups to xylulose, and can use polyphosphate instead of ATP.

Polyphosphate is found in volcanic rocks and in deep-oceanic steam vents. Primeval organisms may have used this substance. The researchers isolated the gene for a xylulokinase from thermotoga maritima, a thermophilic microorganism found in such environments, and used genetic engineering to produce the enzyme. As they hoped, this enzyme can also use polyphosphate and can successfully replace the ATP-dependent xylulokinase in the enzyme cascade.

This team had previously developed a synthetic enzymatic route for the production of hydrogen from cellulose. Now both of the major components of biomass, cellulose and xylose, can be converted together in a new approach for the more economical production of hydrogen.

About the Author
Dr Percival Zhang is an Associate Professor of Biological Systems Engineering Department in the College of Agriculture and Life Sciences and the College of Engineering at Virginia Tech and has been working in the biofuels area for over 15 years. One of his goals are to replace crude oil with renewable sugars. He is the recipient of the Biotechnology and Bioengineering Daniel IC Wang Award and DuPont Young Faculty Award.

Author: Y.-H. Percival Zhang, Virginia Tech, Blacksburg (USA), http://filebox.vt.edu/users/ypzhang/zhang.htm

Title: High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201300766

Y.-H. Percival Zhang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Cutting the Ties That Bind
24.10.2014 | Stowers Institute for Medical Research

nachricht Chamber of secrets - How cells organise themselves influences their ability to communicate
24.10.2014 | European Molecular Biology Laboratory EMBL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

 
Latest News

For brain hemorrhage, risk of death is lower at high-volume hospitals

24.10.2014 | Studies and Analyses

Global boom in hydropower expected this decade

24.10.2014 | Power and Electrical Engineering

NASA's TRMM Satellite Calculates Hurricanes Fay and Gonzalo Rainfall

23.10.2014 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>