Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get to Work, Enzymes!

08.04.2013
High yield: Cell-free enzyme cascade makes hydrogen from xylose

Fuel cells are a highly promising means of producing electricity. However, the hydrogen they require is still largely obtained from coal, oil, or natural gas. Producing hydrogen from less expensive biomass is an attractive alternative, but has not produced sufficient yields to date.

In the journal Angewandte Chemie, a team of American and Mexican researchers has now introduced a cell-free biosystem of thirteen enzymes that can produce hydrogen from xylose, one of the main components of plants, in yields of over 95 %.

Xylose is a pentose (a sugar molecule containing five carbon atoms), and is one of the main building blocks of lignocellulosic biomass—wood and parts of woody plants. It is not economically feasible to separate xylose from the other components of biomass for the production of hydrogen. There are microorganisms that can convert xylose and glucose, the building block that makes up cellulose, into hydrogen. However, the yields are very low.

Y.-H. Percival Zhang at Virginia Tech (Blacksburg, USA) and his co-workers in the USA and Mexico have thus resorted to a trick: They are using the enzymes used by the microorganisms, but in a cell-free system. They combined thirteen enzymes and various cofactors like NADPH into a complex cascade that do not exist in the natural metabolic systems. In a bioreactor, they were able to produce hydrogen from xylose with a yield of over 95 %.

The downside: In the first step of the reaction, xylose is isomerized into xylulose, which must be activated in a second step by addition of a phosphate group. This requires ATP (adenosine triphosphate), the "energy carrier" of cells, to "pump" chemical energy into the enzyme cascade. Unfortunately, ATP is a very expensive material. The thing that depends on ATP is the splitting of the energy-rich bonds between individual phosphate groups. The researchers thus had an idea: They wanted to replace the ATP with a more economical substance, polyphosphate, which also contains energetic phosphate bonds. However, this requires a xylulokinase, an enzyme that attaches phosphate groups to xylulose, and can use polyphosphate instead of ATP.

Polyphosphate is found in volcanic rocks and in deep-oceanic steam vents. Primeval organisms may have used this substance. The researchers isolated the gene for a xylulokinase from thermotoga maritima, a thermophilic microorganism found in such environments, and used genetic engineering to produce the enzyme. As they hoped, this enzyme can also use polyphosphate and can successfully replace the ATP-dependent xylulokinase in the enzyme cascade.

This team had previously developed a synthetic enzymatic route for the production of hydrogen from cellulose. Now both of the major components of biomass, cellulose and xylose, can be converted together in a new approach for the more economical production of hydrogen.

About the Author
Dr Percival Zhang is an Associate Professor of Biological Systems Engineering Department in the College of Agriculture and Life Sciences and the College of Engineering at Virginia Tech and has been working in the biofuels area for over 15 years. One of his goals are to replace crude oil with renewable sugars. He is the recipient of the Biotechnology and Bioengineering Daniel IC Wang Award and DuPont Young Faculty Award.

Author: Y.-H. Percival Zhang, Virginia Tech, Blacksburg (USA), http://filebox.vt.edu/users/ypzhang/zhang.htm

Title: High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201300766

Y.-H. Percival Zhang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>