Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get to Work, Enzymes!

08.04.2013
High yield: Cell-free enzyme cascade makes hydrogen from xylose

Fuel cells are a highly promising means of producing electricity. However, the hydrogen they require is still largely obtained from coal, oil, or natural gas. Producing hydrogen from less expensive biomass is an attractive alternative, but has not produced sufficient yields to date.

In the journal Angewandte Chemie, a team of American and Mexican researchers has now introduced a cell-free biosystem of thirteen enzymes that can produce hydrogen from xylose, one of the main components of plants, in yields of over 95 %.

Xylose is a pentose (a sugar molecule containing five carbon atoms), and is one of the main building blocks of lignocellulosic biomass—wood and parts of woody plants. It is not economically feasible to separate xylose from the other components of biomass for the production of hydrogen. There are microorganisms that can convert xylose and glucose, the building block that makes up cellulose, into hydrogen. However, the yields are very low.

Y.-H. Percival Zhang at Virginia Tech (Blacksburg, USA) and his co-workers in the USA and Mexico have thus resorted to a trick: They are using the enzymes used by the microorganisms, but in a cell-free system. They combined thirteen enzymes and various cofactors like NADPH into a complex cascade that do not exist in the natural metabolic systems. In a bioreactor, they were able to produce hydrogen from xylose with a yield of over 95 %.

The downside: In the first step of the reaction, xylose is isomerized into xylulose, which must be activated in a second step by addition of a phosphate group. This requires ATP (adenosine triphosphate), the "energy carrier" of cells, to "pump" chemical energy into the enzyme cascade. Unfortunately, ATP is a very expensive material. The thing that depends on ATP is the splitting of the energy-rich bonds between individual phosphate groups. The researchers thus had an idea: They wanted to replace the ATP with a more economical substance, polyphosphate, which also contains energetic phosphate bonds. However, this requires a xylulokinase, an enzyme that attaches phosphate groups to xylulose, and can use polyphosphate instead of ATP.

Polyphosphate is found in volcanic rocks and in deep-oceanic steam vents. Primeval organisms may have used this substance. The researchers isolated the gene for a xylulokinase from thermotoga maritima, a thermophilic microorganism found in such environments, and used genetic engineering to produce the enzyme. As they hoped, this enzyme can also use polyphosphate and can successfully replace the ATP-dependent xylulokinase in the enzyme cascade.

This team had previously developed a synthetic enzymatic route for the production of hydrogen from cellulose. Now both of the major components of biomass, cellulose and xylose, can be converted together in a new approach for the more economical production of hydrogen.

About the Author
Dr Percival Zhang is an Associate Professor of Biological Systems Engineering Department in the College of Agriculture and Life Sciences and the College of Engineering at Virginia Tech and has been working in the biofuels area for over 15 years. One of his goals are to replace crude oil with renewable sugars. He is the recipient of the Biotechnology and Bioengineering Daniel IC Wang Award and DuPont Young Faculty Award.

Author: Y.-H. Percival Zhang, Virginia Tech, Blacksburg (USA), http://filebox.vt.edu/users/ypzhang/zhang.htm

Title: High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201300766

Y.-H. Percival Zhang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>