Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get to Work, Enzymes!

08.04.2013
High yield: Cell-free enzyme cascade makes hydrogen from xylose

Fuel cells are a highly promising means of producing electricity. However, the hydrogen they require is still largely obtained from coal, oil, or natural gas. Producing hydrogen from less expensive biomass is an attractive alternative, but has not produced sufficient yields to date.

In the journal Angewandte Chemie, a team of American and Mexican researchers has now introduced a cell-free biosystem of thirteen enzymes that can produce hydrogen from xylose, one of the main components of plants, in yields of over 95 %.

Xylose is a pentose (a sugar molecule containing five carbon atoms), and is one of the main building blocks of lignocellulosic biomass—wood and parts of woody plants. It is not economically feasible to separate xylose from the other components of biomass for the production of hydrogen. There are microorganisms that can convert xylose and glucose, the building block that makes up cellulose, into hydrogen. However, the yields are very low.

Y.-H. Percival Zhang at Virginia Tech (Blacksburg, USA) and his co-workers in the USA and Mexico have thus resorted to a trick: They are using the enzymes used by the microorganisms, but in a cell-free system. They combined thirteen enzymes and various cofactors like NADPH into a complex cascade that do not exist in the natural metabolic systems. In a bioreactor, they were able to produce hydrogen from xylose with a yield of over 95 %.

The downside: In the first step of the reaction, xylose is isomerized into xylulose, which must be activated in a second step by addition of a phosphate group. This requires ATP (adenosine triphosphate), the "energy carrier" of cells, to "pump" chemical energy into the enzyme cascade. Unfortunately, ATP is a very expensive material. The thing that depends on ATP is the splitting of the energy-rich bonds between individual phosphate groups. The researchers thus had an idea: They wanted to replace the ATP with a more economical substance, polyphosphate, which also contains energetic phosphate bonds. However, this requires a xylulokinase, an enzyme that attaches phosphate groups to xylulose, and can use polyphosphate instead of ATP.

Polyphosphate is found in volcanic rocks and in deep-oceanic steam vents. Primeval organisms may have used this substance. The researchers isolated the gene for a xylulokinase from thermotoga maritima, a thermophilic microorganism found in such environments, and used genetic engineering to produce the enzyme. As they hoped, this enzyme can also use polyphosphate and can successfully replace the ATP-dependent xylulokinase in the enzyme cascade.

This team had previously developed a synthetic enzymatic route for the production of hydrogen from cellulose. Now both of the major components of biomass, cellulose and xylose, can be converted together in a new approach for the more economical production of hydrogen.

About the Author
Dr Percival Zhang is an Associate Professor of Biological Systems Engineering Department in the College of Agriculture and Life Sciences and the College of Engineering at Virginia Tech and has been working in the biofuels area for over 15 years. One of his goals are to replace crude oil with renewable sugars. He is the recipient of the Biotechnology and Bioengineering Daniel IC Wang Award and DuPont Young Faculty Award.

Author: Y.-H. Percival Zhang, Virginia Tech, Blacksburg (USA), http://filebox.vt.edu/users/ypzhang/zhang.htm

Title: High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201300766

Y.-H. Percival Zhang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>