Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Words, gestures are translated by same brain regions, says new research

10.11.2009
Findings may further our understanding of how language evolved

Your ability to make sense of Groucho's words and Harpo's pantomimes in an old Marx Brothers movie takes place in the same regions of your brain, says new research funded by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health.

In a study published in this week's Early Edition of Proceedings of the National Academy of Sciences (PNAS), researchers have shown that the brain regions that have long been recognized as a center in which spoken or written words are decoded are also important in interpreting wordless gestures. The findings suggest that these brain regions may play a much broader role in the interpretation of symbols than researchers have thought and, for this reason, could be the evolutionary starting point from which language originated.

"In babies, the ability to communicate through gestures precedes spoken language, and you can predict a child's language skills based on the repertoire of his or her gestures during those early months," said James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. "These findings not only provide compelling evidence regarding where language may have come from, they help explain the interplay that exists between language and gesture as children develop their language skills."

Scientists have known that sign language is largely processed in the same regions of the brain as spoken language. These regions include the inferior frontal gyrus, or Broca's area, in the front left side of the brain, and the posterior temporal region, commonly referred to as Wernicke's area, toward the back left side of the brain. It isn't surprising that signed and spoken language activate the same brain regions, because sign language operates in the same way as spoken language does—with its own vocabulary and rules of grammar.

In this study, NIDCD researchers, in collaboration with scientists from Hofstra University School of Medicine, Hempstead, N.Y., and San Diego State University, wanted to find out if non-language-related gestures—the hand and body movements we use that convey meaning on their own, without having to be translated into specific words or phrases—are processed in the same regions of the brain as language is. Two types of gestures were considered for the study: pantomimes, which mimic objects or actions, such as unscrewing a jar or juggling balls, and emblems, which are commonly used in social interactions and which signify abstract, usually more emotionally charged concepts than pantomimes. Examples include a hand sweeping across the forehead to indicate "it's hot in here!" or a finger to the lips to signify "be quiet."

While inside a functional MRI machine, 20 healthy, English-speaking volunteers—nine males and 11 females—watched video clips of a person either acting out one of the two gesture types or voicing the phrases that the gestures represent. As controls, volunteers also watched clips of the person using meaningless gestures or speaking pseudowords that had been chopped up and randomly reorganized so the brain would not interpret them as language. Volunteers watched 60 video clips for each of the six stimuli, with the clips presented in 45-second time blocks at a rate of 15 clips per block. A mirror attached to the head enabled the volunteer to watch the video projected on the scanner room wall. The scientists then measured brain activity for each of the stimuli and looked for similarities and differences as well as any communication occurring between individual parts of the brain.

The researchers found that for the gesture and spoken language stimuli, the brain was highly activated in the inferior frontal and posterior temporal areas, the long-recognized language regions of the brain.

"If gesture and language were not processed by the same system, you'd have spoken language activating the inferior frontal and posterior temporal areas, and gestures activating other parts of the brain," said Allen Braun, M.D., senior author on the paper, "But in fact we found virtual overlap."

Current thinking in the study of language is that, like a smart search engine that pops up the most suitable Web site at the top of its search results, the posterior temporal region serves as a storehouse of words from which the inferior frontal gyrus selects the most appropriate match. The researchers suggest that, rather than being limited to deciphering words alone, these regions may be able to apply meaning to any incoming symbols, be they words, gestures, images, sounds, or objects. According to Dr. Braun, these regions also may present a clue into how language evolved.

"Our results fit a longstanding theory which says that the common ancestor of humans and apes communicated through meaningful gestures and, over time, the brain regions that processed gestures became adapted for using words," he said. "If the theory is correct, our language areas may actually be the remnant of this ancient communication system, one that continues to process gesture as well as language in the human brain."

Dr. Braun adds that developing a better understanding of the brain systems that support gestures and words may help in the treatment of some patients with aphasia, a disorder that hinders a person's ability to produce or understand language.

NIDCD supports and conducts research and research training on the normal and disordered processes of hearing, balance, smell, taste, voice, speech and language and provides health information, based upon scientific discovery, to the public. For more information about NIDCD programs, see the Web site at www.nidcd.nih.gov.

The National Institutes of Health—The Nation's Medical Research Agency — includes 27 institutes and centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

Jennifer Wenger | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>