Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Woodchucks and sudden cardiac death

24.02.2012
Hibernation offers new insight into protection from cardiac arrhythmias

How much calcium could a hibernating woodchuck's heart cells sequester, if a hibernating woodchuck's heart cells could sequester calcium? More than enough, it turns out, to protect the animals from cardiac arrhythmias – abnormal heart rhythms such as ventricular tachycardia and ventricular fibrillation that can lead to sudden cardiac death – according to a new study of the hibernating animals that may provide insight into arrhythmia therapies. The findings will be presented at a poster session at the 56th Annual Meeting of the Biophysical Society (BPS), which will take place Feb. 25-29 in San Diego, Calif.

Bear and bats can be roused from their slumber by external stimuli. But woodchucks (Marmota monax), also known as groundhogs, are "true hibernators," which means they can enter a profoundly altered physiological state: their body temperature drops to near-ambient levels (often as low as freezing) and heart and respiration rates slow dramatically. Despite – or perhaps because of – these changes, hibernating animals have been found to be more resistant to cardiac arrhythmias and sudden cardiac death.

Electrophysiologist Lai-Hua Xie, an assistant professor at the University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School in Newark, and his colleagues examined muscle cells, or myocytes, isolated in winter and in summer from woodchucks. Using a charge-coupled device (CCD) camera, the researchers monitored the release and uptake of calcium ions when the cells were activated. The team found that in winter woodchucks, the myocyte sarcoplasmic reticulum – the membrane system in muscle cells that stores and releases calcium – had less spontaneous leakage of calcium, released more of it during excitation, and took it back up faster than that of summer woodchucks or non-hibernating animals. This is likely, he says, "to generate a stronger contraction and faster relaxation, and most importantly, to prevent abnormal changes in the heart's electrical activities called afterdepolarizations."

The overall effect, Xie says, is a "higher resistance to arrhythmia in woodchucks in winter. Understanding these cardiac adaptive mechanisms in hibernators may suggest new strategies to protect non-hibernating animals, especially humans, from fatal cardiac arrhythmias induced by hypothermic stresses and myocardial ischemia."

Xie and his colleagues conducted the work with funding from the National Institutes of Health and in collaboration with Stephen Vatner, director of the UMDNJ-New Jersey Medical School Cardiovascular Research Center.

The presentation, "Calcium handling properties in a hibernating animal: Insights into antiarrhythmic mechanisms," is at 1:45 on Sunday, Feb. 26, 2012, in the San Diego Convention Center, Hall FGH. ABSTRACT: http://tinyurl.com/7mtrp4a

This news release was prepared for the Biophysical Society (BPS) by the American Institute of Physics (AIP).

ABOUT THE 2012 ANNUAL MEETING

Each year, the Biophysical Society Annual Meeting brings together over 6,000 research scientists in the multidisciplinary fields representing biophysics. With more than 4,000 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup meetings, platform sessions, social activities, and committee programs.

The 56th Annual Meeting will be held at the San Diego Convention Center (111 W. Harbor Drive, San Diego, CA 92101), located three miles from the San Diego International Airport and less than one mile from the Amtrak station. The San Diego Trolley has two stops directly in front of the Center at Harbor Drive/First Avenue and Harbor Drive/Fifth Avenue.

QUICK LINKS

Meeting Home Page: http://www.biophysics.org/2012meeting/Main/tabid/2386/Default.aspx

Housing and Travel Information: http://www.biophysics.org/2012meeting/AccommodationsTravel/HotelInformation/tabid/2479/Default.aspx

Program Abstracts and Itinerary Planner: http://www.abstractsonline.com/plan/start.aspx?mkey=%7B5B4BAD87%2D5B6D%2D4994%2D84CE%2DB3B13E2AEAA3%7D

PRESS REGISTRATION

The Biophysical Society invites credentialed journalists, freelance reporters working on assignment, and public information officers to attend its Annual Meeting free of charge. For more information on registering as a member of the press, contact Ellen Weiss, Director of Public Affairs and Communications (eweiss@biophysics.org, 240-290-5606), or visit http://www.biophysics.org/2012meeting/Registration/Press/tabid/2477/Default.aspx
ABOUT BPS

The Biophysical Society (BPS), founded in 1956, is a professional scientific society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its 9000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry. For more information on the Society or the 2012 Annual Meeting, visit www.biophysics.org.

Ellen R. Weiss | EurekAlert!
Further information:
http://www.biophysics.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>