Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First wood-digesting enzyme found in bacteria could boost biofuel production

10.06.2011
Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC)-led Integrated Biorefining Research and Technology (IBTI) Club have identified an enzyme in bacteria which could be used to make biofuel production more efficient. The research is published in the 14 June issue of the American Chemical Society journal Biochemistry.
This research, carried out by teams at the Universities of Warwick and British Columbia, could make sustainable sources of biofuels, such as woody plants and the inedible parts of crops, more economically viable.

The researchers, who were also supported by the Engineering and Physical Sciences Research Council, have discovered an enzyme which is important in breaking down lignin, one of the components of the woody parts of plants. Lignin is important in making plants sturdy and rigid but, because it is difficult to break down, it makes extracting the energy-rich sugars used to produce bioethanol more difficult. Fast-growing woody plants and the inedible by-products of crops could both be valuable sources of biofuels but it is difficult to extract enough sugar from them for the process to be economically viable. Using an enzyme to break down lignin would allow more fuel to be produced from the same amount of plant mass.

The researchers identified the gene for breaking down lignin in a soil-living bacterium called Rhodococcus jostii. Although such enzymes have been found before in fungi, this is the first time that they have been identified in bacteria. The bacterium's genome has already been sequenced which means that it could be modified more easily to produce large amounts of the required enzyme. In addition, bacteria are quick and easy to grow, so this research raises the prospect of producing enzymes which can break down lignin on an industrial scale.

Professor Timothy Bugg, from the University of Warwick, who led the team, said "For biofuels to be a sustainable alternative to fossil fuels we need to extract the maximum possible energy available from plants. By raising the exciting possibility of being able to produce lignin-degrading enzymes from bacteria on an industrial scale this research could help unlock currently unattainable sources of biofuels.

"By making woody plants and the inedible by-products of crops economically viable the eventual hope is to be able to produce biofuels that don't compete with food production."

The team at Warwick have been collaborating with colleagues in Canada at the University of British Columbia who have been working to unravel the structure of the enzyme. They hope next to find similar enzymes in bacteria which live in very hot environments such as near volcanic vents. Enzymes in these bacteria have evolved to work best at high temperatures meaning they are ideally suited to be used in industrial processes.

Duncan Eggar, BBSRC Sustainable Bioenergy Champion, said: "Burning wood has long been a significant source of energy. Using modern bioscience we can use woody plants in more sophisticated ways to fuel our vehicles and to produce materials and industrial chemicals. This must all be done both ethically and sustainably. Work like this which develops conversion processes and improves efficiencies is vital."

Notes to editors
This paper is available online here: http://pubs.acs.org/doi/abs/10.1021/bi101892z
About IBTI
The Integrated Biorefining Technologies Initiative (IBTI) club aims to provide a means to combine relevant academic expertise to work on innovative, multidisciplinary, scientific areas of relevance to industry. An integral feature of the club's operation will be the delivery of efficient mechanisms to facilitate the dissemination of research outcomes to club members and support effective networking and community building between academic groups and the companies involved.

The club currently has 10 company members:

Biocaldol Ltd
BP Biofuels UK Ltd
British Sugar Plc
Croda Enterprises Ltd
Green Biologics Ltd
HGCA
InCrops
KWS UK Ltd
Syngenta Ltd
TMO Renewables Ltd
About EPSRC
The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and physical sciences. EPSRC invests around £800m a year in research and postgraduate training, to help the nation handle the next generation of technological change.

The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via research Councils UK. www.epsrc.ac.uk

About BBSRC
BBSRC is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £470M in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

The Babraham Institute
Institute for Animal Health
Institute of Biological, Environmental and Rural Sciences (Aberystwyth University)
Institute of Food Research
John Innes Centre
The Genome Analysis Centre
The Roslin Institute (University of Edinburgh)
Rothamsted Research
The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.
Contact
Mike Davies, Media Officer
mike.davies@bbsrc.ac.uk
tel: 01793 414694
fax: 01793 413382
Nancy Mendoza, Senior Media Officer
nancy.mendoza@bbsrc.ac.uk
tel: 01793 413355
fax: 01793 413382
Matt Goode, Head of Corporate Communications
matt.goode@bbsrc.ac.uk
tel: 01793 413299
fax: 01793 413382

Mike Davies | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>