Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood's 'noble rot' fungus genetically decoded

20.07.2010
Nature Biotechnology publishes the complete genome of Empa's 'violin fungus'

An international team including Empa researcher Francis Schwarze has sequenced the genome of the common split gill mushroom, Schizophyllum commune, a widely distributed fungus which grows on and decomposes wood.

The genome, containing some 13,000 genes, has recently been published in Nature Biotechnology. The new data allows scientists a view of the mushroom's unique enzyme-based digestive apparatus which gives it the ability to attack and degrade wood, causing white rot. It is this ability which Schwarze, together with other colleagues, has exploited to improve the tonal qualities of wood used to make violins.

Fungi are the ideal recycling machines – they decompose dead organic material and convert it into nutritious humus, and together with bacteria they are nature's most important detritivores. During the course of their evolution they have developed special digestive enzymes with which they are able to decompose lignin and other complex substances in woody plants, an ability which is almost unique in nature. However, many species of fungi also attack living wood, thereby causing significant economic damage to wood related industries.

That fungi not only cause damage through their ability to decompose certain constituent materials of wood but can actually improve specific properties of wood has already been shown by Empa's Francis Schwarze. In his «Stradivarius Project» he has used wood-attacking fungi such as the (now genetically decoded) S. commune to improve the tonal qualities of spruce or maple used to make violins. In 2006 Schwarze submitted a patent application covering this process, and last September a biotech violin made with wood treated with fungi was judged superior to a genuine Stradivarius in a blind test.

A real expert at recycling carbohydrates

Schwarze has high hopes for the now completely deciphered genome of "his" fungus. "The genome sequence provides us with essential information on the lignolytic – that is, wood decomposing – enzymes. This knowledge will allow us to genetically modify the wild strain in order to optimize and control very specific decomposition processes." The S. commune genome ought to be a rich source of information, since according to genetic analysis the split gill mushroom possesses the most comprehensive enzyme-based digestive apparatus of all standing fungi (Basidiomycota). The enzymes are used to digest polysaccharides (carbohydrates and long-chain sugars) and to decompose lignin in wood, an ability which is unique, as far as is currently known. According to Schwarze this wide range of enzymatic activity explains why S. commune is so widespread; the fungus can nourish itself on practically anything!

This relatively new field, which Schwarze calls «Fungal Biotechnology», provides a means of improving the process of impregnating spruce and pine wood – neither of which are particularly long-lasting or hard-wearing – with protective and finishing agents. Schwarze is convinced that "…this represents an enormous commercial potential, above all in Switzerland, where more than 60% of the forests are spruce and pine." Another possible application is improving the efficiency of methods for the production of biogenic fuels based on woody biomass.

In addition, the genetic sequence is expected to supply important information on the development of the fruiting body of the fungus and how this process can be optimized, for example in the cultivation of edible mushrooms. Considering that some 2.5 million tonnes of edible fungi are produced every year, this could well prove to be very profitable know-how.

Literature reference

«Genome Sequence of the model mushroom Schizophyllum commune», Robin A. Ohm et al., Nature Biotechnology, published online on 11th July 2010 (DOI: 10.1038/nbt.1643); Abstract at http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt.1643.html

Dr. Francis W.M.R. Schwarze | EurekAlert!
Further information:
http://www.empa.ch
http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt.1643.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>