Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood's 'noble rot' fungus genetically decoded

20.07.2010
Nature Biotechnology publishes the complete genome of Empa's 'violin fungus'

An international team including Empa researcher Francis Schwarze has sequenced the genome of the common split gill mushroom, Schizophyllum commune, a widely distributed fungus which grows on and decomposes wood.

The genome, containing some 13,000 genes, has recently been published in Nature Biotechnology. The new data allows scientists a view of the mushroom's unique enzyme-based digestive apparatus which gives it the ability to attack and degrade wood, causing white rot. It is this ability which Schwarze, together with other colleagues, has exploited to improve the tonal qualities of wood used to make violins.

Fungi are the ideal recycling machines – they decompose dead organic material and convert it into nutritious humus, and together with bacteria they are nature's most important detritivores. During the course of their evolution they have developed special digestive enzymes with which they are able to decompose lignin and other complex substances in woody plants, an ability which is almost unique in nature. However, many species of fungi also attack living wood, thereby causing significant economic damage to wood related industries.

That fungi not only cause damage through their ability to decompose certain constituent materials of wood but can actually improve specific properties of wood has already been shown by Empa's Francis Schwarze. In his «Stradivarius Project» he has used wood-attacking fungi such as the (now genetically decoded) S. commune to improve the tonal qualities of spruce or maple used to make violins. In 2006 Schwarze submitted a patent application covering this process, and last September a biotech violin made with wood treated with fungi was judged superior to a genuine Stradivarius in a blind test.

A real expert at recycling carbohydrates

Schwarze has high hopes for the now completely deciphered genome of "his" fungus. "The genome sequence provides us with essential information on the lignolytic – that is, wood decomposing – enzymes. This knowledge will allow us to genetically modify the wild strain in order to optimize and control very specific decomposition processes." The S. commune genome ought to be a rich source of information, since according to genetic analysis the split gill mushroom possesses the most comprehensive enzyme-based digestive apparatus of all standing fungi (Basidiomycota). The enzymes are used to digest polysaccharides (carbohydrates and long-chain sugars) and to decompose lignin in wood, an ability which is unique, as far as is currently known. According to Schwarze this wide range of enzymatic activity explains why S. commune is so widespread; the fungus can nourish itself on practically anything!

This relatively new field, which Schwarze calls «Fungal Biotechnology», provides a means of improving the process of impregnating spruce and pine wood – neither of which are particularly long-lasting or hard-wearing – with protective and finishing agents. Schwarze is convinced that "…this represents an enormous commercial potential, above all in Switzerland, where more than 60% of the forests are spruce and pine." Another possible application is improving the efficiency of methods for the production of biogenic fuels based on woody biomass.

In addition, the genetic sequence is expected to supply important information on the development of the fruiting body of the fungus and how this process can be optimized, for example in the cultivation of edible mushrooms. Considering that some 2.5 million tonnes of edible fungi are produced every year, this could well prove to be very profitable know-how.

Literature reference

«Genome Sequence of the model mushroom Schizophyllum commune», Robin A. Ohm et al., Nature Biotechnology, published online on 11th July 2010 (DOI: 10.1038/nbt.1643); Abstract at http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt.1643.html

Dr. Francis W.M.R. Schwarze | EurekAlert!
Further information:
http://www.empa.ch
http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt.1643.html

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>