Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With the right rehabilitation, paralyzed rats learn to grip again

13.06.2014

After a large stroke, motor skills barely improve, even with rehabilitation.

An experiment conducted on rats demonstrates that a course of therapy combining the stimulation of nerve fiber growth with drugs and motor training can be successful. The key, however, is the correct sequence: Paralyzed animals only make an almost complete recovery if the training is delayed until after the growth promoting drugs have been administered, as researchers from the University of Zurich, ETH Zurich and the University of Heidelberg reveal.


The red trajectories show a rats movements after stroke. Suffering from motor deficits, the rat misses the sugar pellet. After rehabilitation the grasps are smooth and distinct (green trajectories). Tabea Kraus


Grasping of a rat after stroke: The upper sequence depicts disturbed motor function after stroke. The pictures below show restored grasping kinematics due to immunotherapy and rehabilitation. Tabea Kraus

Only if the timing, dosage and kind of rehabilitation are right can motor functions make an almost full recovery after a large stroke. Rats that were paralyzed down one side by a stroke almost managed to regain their motor functions fully if they were given the ideal combination of rehabilitative training and substances that boosted the growth of nerve fibers.

Anatomical studies confirmed the importance of the right rehabilitation schedule: Depending on the therapeutic design, different patterns of new nerve fibers that sprouted into the cervical spinal cord from the healthy part of the brain and thus aid functional recovery to varying degrees were apparent. The study conducted by an interdisciplinary team headed by Professor Martin Schwab from the Brain Research Institute at the University of Zurich and ETH Zurich’s Neuroscience Center is another milestone in research on the repair of brain and spinal cord injuries.

“This new rehabilitative approach at least triggered an astonishing recovery of the motor skills in rats, which may become important for the treatment of stroke patients in the future,” says first author Anna-Sophia Wahl. At present, patients have to deal with often severe motor-function, language and vision problems, and their quality of life is often heavily affected.

Allow nerves to grow first, then train

On the one hand, the treatment of rats after a stroke involves specific immune therapy, where so-called Nogo proteins are blocked with antibodies. These proteins in the tissue around the nerve fibers inhibit nerve-fiber growth. If they are blocked, nerve fibers begin to sprout in the injured sections of the brain and spinal cord and relay nerve impulses again. On the other hand, the stroke animals, whose front legs were paralyzed, underwent physical training – namely, gripping food pellets. All the rats received antibody treatment first to boost nerve-fiber growth and – either at the same time or only afterwards – motor training.

The results are surprising: The animals that began their training later regained a remarkable 85 percent of their original motor skills. For the rats that were trained straight after the stroke in parallel with the growth-enhancing antibodies, however, it was a different story: At 15 percent, their physical performance in the grip test remained very low.

Meticulous design very promising

The researchers consider timing a crucial factor for the success of the rehabilitation: An early application of growth stimulators – such as antibodies against the protein Nogo-A – triggers an increased sprouting and growth of nerve fibers. The subsequent training is essential to sift out and stabilize the key neural circuits for the recovery of the motor functions. For instance, an automatic, computer-based analysis of the anatomical data from the imaging revealed that new fibers in the spinal cord sprouted in another pattern depending on the course of treatment. By reversibly deactivating the new nerve fibers that grow, the neurobiologists were ultimately able to demonstrate for the first time that a group of these fibers is essential for the recovery of the motor function observed: Nerve fibers that grew into the spinal cord from the intact front half of the brain – changing sides – can reconnect the spinal cord circuits of the rats’ paralyzed limbs to the brain, enabling the animals to grip again.

“Our study reveals how important a meticulous therapeutic design is for the most successful rehabilitation possible,” sums up study head Martin Schwab. “The brain has enormous potential for the reorganization and reestablishment of its functions. With the right therapies at the right time, this can be increased in a targeted fashion.”

A successful interdisciplinary approach

The study was a collaborative project between biologists, physicians and computer scientists. The interdisciplinary team headed by Professor Martin Schwab from UZH’s Brain Research Institute and UZH and ETH Zurich’s Neuroscience Center included Professor Fritjof Helmchen’s group within the same institute and, at the University of Heidelberg, Professor Björn Ommer’s group at the Heidelberg Collaboratory for Image Processsing and the Interdisciplinary Center for Scientific Computing.

Literature:
Wahl, A.S., Omlor, W., Rubio, J.C., Chen, J.L., Zheng, H., Schröter, A., Gullo, M., Weinmann, O., Kobayashi, K., Helmchen, F., Ommer, B., Schwab, M.E. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science, June 13, 2014. doi: 10.1126/science.1253050

Prof. Martin E. Schwab
Brain Research Institute
University of Zurich

Neuroscience Center Zurich of ETH and University of Zurich
Winterthurerstr. 190
8057 Zurich
Phone: +41 44 635 3330
E-mail: schwab@hifo.uzh.ch


Dr. Anna-Sophia Wahl
Brain Research Institute
University of Zurich

Neuroscience Center Zurich of ETH and University of Zurich
Winterthurerstr. 190
8057 Zurich
Phone: +41 44 635 3228
E-mail: wahl@hifo.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

Further reports about: Brain ETH Neuroscience animals drugs factor fibers proteins rats spinal stroke therapeutic therapy

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>