Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With the right rehabilitation, paralyzed rats learn to grip again

13.06.2014

After a large stroke, motor skills barely improve, even with rehabilitation.

An experiment conducted on rats demonstrates that a course of therapy combining the stimulation of nerve fiber growth with drugs and motor training can be successful. The key, however, is the correct sequence: Paralyzed animals only make an almost complete recovery if the training is delayed until after the growth promoting drugs have been administered, as researchers from the University of Zurich, ETH Zurich and the University of Heidelberg reveal.


The red trajectories show a rats movements after stroke. Suffering from motor deficits, the rat misses the sugar pellet. After rehabilitation the grasps are smooth and distinct (green trajectories). Tabea Kraus


Grasping of a rat after stroke: The upper sequence depicts disturbed motor function after stroke. The pictures below show restored grasping kinematics due to immunotherapy and rehabilitation. Tabea Kraus

Only if the timing, dosage and kind of rehabilitation are right can motor functions make an almost full recovery after a large stroke. Rats that were paralyzed down one side by a stroke almost managed to regain their motor functions fully if they were given the ideal combination of rehabilitative training and substances that boosted the growth of nerve fibers.

Anatomical studies confirmed the importance of the right rehabilitation schedule: Depending on the therapeutic design, different patterns of new nerve fibers that sprouted into the cervical spinal cord from the healthy part of the brain and thus aid functional recovery to varying degrees were apparent. The study conducted by an interdisciplinary team headed by Professor Martin Schwab from the Brain Research Institute at the University of Zurich and ETH Zurich’s Neuroscience Center is another milestone in research on the repair of brain and spinal cord injuries.

“This new rehabilitative approach at least triggered an astonishing recovery of the motor skills in rats, which may become important for the treatment of stroke patients in the future,” says first author Anna-Sophia Wahl. At present, patients have to deal with often severe motor-function, language and vision problems, and their quality of life is often heavily affected.

Allow nerves to grow first, then train

On the one hand, the treatment of rats after a stroke involves specific immune therapy, where so-called Nogo proteins are blocked with antibodies. These proteins in the tissue around the nerve fibers inhibit nerve-fiber growth. If they are blocked, nerve fibers begin to sprout in the injured sections of the brain and spinal cord and relay nerve impulses again. On the other hand, the stroke animals, whose front legs were paralyzed, underwent physical training – namely, gripping food pellets. All the rats received antibody treatment first to boost nerve-fiber growth and – either at the same time or only afterwards – motor training.

The results are surprising: The animals that began their training later regained a remarkable 85 percent of their original motor skills. For the rats that were trained straight after the stroke in parallel with the growth-enhancing antibodies, however, it was a different story: At 15 percent, their physical performance in the grip test remained very low.

Meticulous design very promising

The researchers consider timing a crucial factor for the success of the rehabilitation: An early application of growth stimulators – such as antibodies against the protein Nogo-A – triggers an increased sprouting and growth of nerve fibers. The subsequent training is essential to sift out and stabilize the key neural circuits for the recovery of the motor functions. For instance, an automatic, computer-based analysis of the anatomical data from the imaging revealed that new fibers in the spinal cord sprouted in another pattern depending on the course of treatment. By reversibly deactivating the new nerve fibers that grow, the neurobiologists were ultimately able to demonstrate for the first time that a group of these fibers is essential for the recovery of the motor function observed: Nerve fibers that grew into the spinal cord from the intact front half of the brain – changing sides – can reconnect the spinal cord circuits of the rats’ paralyzed limbs to the brain, enabling the animals to grip again.

“Our study reveals how important a meticulous therapeutic design is for the most successful rehabilitation possible,” sums up study head Martin Schwab. “The brain has enormous potential for the reorganization and reestablishment of its functions. With the right therapies at the right time, this can be increased in a targeted fashion.”

A successful interdisciplinary approach

The study was a collaborative project between biologists, physicians and computer scientists. The interdisciplinary team headed by Professor Martin Schwab from UZH’s Brain Research Institute and UZH and ETH Zurich’s Neuroscience Center included Professor Fritjof Helmchen’s group within the same institute and, at the University of Heidelberg, Professor Björn Ommer’s group at the Heidelberg Collaboratory for Image Processsing and the Interdisciplinary Center for Scientific Computing.

Literature:
Wahl, A.S., Omlor, W., Rubio, J.C., Chen, J.L., Zheng, H., Schröter, A., Gullo, M., Weinmann, O., Kobayashi, K., Helmchen, F., Ommer, B., Schwab, M.E. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science, June 13, 2014. doi: 10.1126/science.1253050

Prof. Martin E. Schwab
Brain Research Institute
University of Zurich

Neuroscience Center Zurich of ETH and University of Zurich
Winterthurerstr. 190
8057 Zurich
Phone: +41 44 635 3330
E-mail: schwab@hifo.uzh.ch


Dr. Anna-Sophia Wahl
Brain Research Institute
University of Zurich

Neuroscience Center Zurich of ETH and University of Zurich
Winterthurerstr. 190
8057 Zurich
Phone: +41 44 635 3228
E-mail: wahl@hifo.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

Further reports about: Brain ETH Neuroscience animals drugs factor fibers proteins rats spinal stroke therapeutic therapy

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>