Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar scientists decipher structure of NatA, an enzyme complex that modifies most human proteins

05.08.2013
Vital enzyme complex found elevated in many cancers

A team of researchers from Philadelphia and Norway has determined the structure of an enzyme complex that modifies one end of most human proteins and is made at elevated levels in numerous forms of cancer.

A study in Nature Structural & Molecular Biology, led by researchers at The Wistar Institute, depicts the structure and the means of action of a protein complex called NatA. Their findings, they believe, will allow them to create an inhibitor—a potential drug—that could knock out NatA in order to curb the growth of cancer cells.

"NatA appears essential for the growth of cells and their ability to divide, and we can see elevated production of this enzyme in many forms of cancer" said Ronen Marmorstein, Ph.D., senior author, Hilary Koprowski, M.D. Professor, and leader of The Wistar Institute Cancer Center's Gene Expression and Regulation program. "Obviously, this is a particularly appealing drug target and we are currently leveraging our recent understanding of how the protein works to develop small molecules that will bind to and inactivate NatA."

NatA is a member of a family of N-terminal acetyltransferase (NAT) enzymes (or enzyme complexes) that modify proteins in order to control their behavior—for example by turning proteins on, telling proteins where to move, and tagging proteins or the cell for destruction.

According to Marmorstein, NatA works with an amazing specificity for a particular sequence of amino acids—the individual building blocks of proteins—and unraveling the roots of that specificity has proven an alluring puzzle for scientists.

The Marmorstein laboratory has proven expertise in the study of acetylation enzymes, proteins that modify other molecules in the cell with an acetyl group "tag." In the cellular world, structure dictates function, and acetylation is a universal process for controlling protein behavior and gene expression in living organisms.

"Modifying protein structures is one way that our cells control how proteins function," Marmorstein explained, "and enzymes in the NAT family modify nearly 85 percent of human proteins, and 50 percent of these are modified by NatA."

According to Marmorstein, NatA operates in a complex of two proteins, an enzymatic subunit and an auxiliary partner. When they developed the structure of NatA—by bombarding a crystallized sample of the enzyme with powerful X-rays—they found how the auxiliary partner protein is crucial for turning the enzymatic subunit on.

Binding to an auxiliary protein causes a structural change in the enzymatic subunit that properly configures the active site of the protein—the region of the protein where the chemical reaction occurs—essentially acting as a switch that activates the enzyme.

"When it binds to its auxiliary protein, the enzymatic subunit of NatA actually changes shape, reconfiguring the structure to allow it to properly grab its target protein N-terminal sequence for acetylation," Marmorstein said.

Importantly, others have found that NatA function is required for the proliferation of cancer cells. Marmorstein says, understanding the structure of NatA has allowed his team to better understand how to inactivate the protein in cancer cells. The structure has yielded targets for small molecules that will act as inhibitors, essentially stopping the protein by gumming up its structure.

The lead author of this study is Glen Liszczak, Ph.D., a graduate student working at the Wistar Institute from the University of Pennsylvania Department of Chemistry. Other co-authors of this study include, Jacob M. Goldberg, and E. James Petersson, Ph.D., from the University of Pennsylvania's Department of Chemistry; and Hårvard Foyn, Ph.D., and Thomas Arnesen, Ph.D., from the University of Bergen, Norway.

Funding for this project was through the National Institutes of Health grants GM060293 and GM071339. The Arnesen laboratory's efforts were supported by the Research Council of Norway and the Norwegian Cancer Society.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>