Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar researchers discover new class of objects encoded within the genome

07.10.2010
Despite progress in decoding the genome, scientists estimate that fully 95 percent of our DNA represents dark, unknown territory.

In the October 1 issue of the journal Cell researchers at The Wistar Institute shed new light on the genetic unknown with the discovery of the ability of long non-coding RNA (ncRNA) to promote gene expression.

The researchers believe these long ncRNA molecules may represent so-called gene enhancer elements—short regions of DNA that can increase gene transcription. While scientists have known about gene enhancers for decades, there has been no consensus about how these enhancers work.

These findings join a growing body of evidence that the classic “central dogma” of genetics is incomplete. In the central dogma, chromosomal DNA is transcribed into RNA, which is then translated by the cell into proteins. In recent years, however, scientists have found that not all transcribed RNA molecules become translated into proteins. In fact, studies have shown that whole swathes of the genome are transcribed for unknown reasons.

In the present study, the Wistar researchers pinpoint 3,000 long ncRNAs and estimate that there could be a total of between 10,000 to 12,000 long ncRNA sequences within our DNA. This number is comparable to the 20,000 genes that are known to encode proteins. Most long ncRNAs are encoded in DNA near genes known to be important to both stem cells and cancer. This observation also suggests that targeting ncRNAs may represent a new strategy in slowing cancer growth.

“We are excited, first of all, because this is a new discovery about the very nature of human DNA; a new class of genetic object and a new layer of genetic regulation,” said Ramin Shiekhattar, Ph.D., Wistar’s Herbert Kean, M.D., Family Professor and senior author of the study.

“Secondly, we may have solved, in part, a great mystery in modern genetics. These long non-coding RNA sequences may account for the activity of enhancer elements, which have been well-studied but never quite characterized,” Shiekhattar said.

Almost three years ago, while at the Centre for Genomic Regulation in Barcelona, Spain, Shiekhattar began a prospective hunt for non-coding RNA sequences using GENCODE, a database that annotates the human genome with currently available scientific evidence. After filtering out protein-coding transcripts and non-coding RNAs that might overlap known protein-coding genes, they found approximately 3,000 long ncRNA sequences. At the time, GENCODE only accounted for a third of the genome, so Shiekhattar estimates that there are likely more.

The researchers mapped the ncRNA sites within the genome, and found that ncRNAs tended to be located near genes that influence how stem cells change into other cell types. Shiekhattar and his colleagues then developed new assays to screen cell cultures for these ncRNA sequences, and discovered that ncRNAs were found extensively in a variety of cell types.

The idea that molecules of RNA can have a DNA-regulating effect is well established. More than 1,000 so-called microRNAs are known to science, for example, and their effect on silencing genes has been well described. According to Shiekhattar, he assumed that long ncRNAs would also silence genes, not promote their activation. To his surprise, the researchers found that depleting a cell of ncRNAs actually decreased the degree of overall gene expression of neighboring genes, revealing a role for ncRNAs in potentiating gene expression.

In fact, when Shiekhattar and his colleagues depleted adult stem cells of a specific long ncRNA, known as ncRNA-activating 7 (ncRNA-a7), it had the same effect as depleting the protein product of a nearby gene, Snai1, which regulates how the cells migrate. Their studies further showed that inserting an ncRNA next to a gene for luciferase—the enzyme responsible for a firefly’s glow—increased the amount of protein produced by that gene in cells grown in culture. While not all long ncRNAs may act like enhancers, the majority of the ones the team studied do, Shiekhattar says.

“We know long non-coding RNAs can promote gene expression, but what we need to know now is how they do it,” Shiekhattar said, “which is precisely the object of our ongoing research plan.”

Wistar co-authors include Ulf Andersson Ørom, Ph.D., first author and postdoctoral fellow in the Shiekhattar laboratory; Qihong Huang, M.D., Ph.D., a Wistar professor; Kiranmai Gumireddy, Ph.D., a senior staff scientist in the Huang laboratory; Malte Beringer, Ph.D., Alessandro Gardini, Ph.D., and Fan Lai, Ph.D., postdoctoral fellows in the Shiekhattar laboratory. Co-authors from the Centre for Genomic Regulation include Thomas Derrien, Ph.D., Giovanni Bussotti, Ph.D., Matthias Zytnicki, Ph.D., Cedric Notredame, Ph.D., and Roderic Guigo, Ph.D.

Funding for this study was provided by the National Institutes of Health, the American Italian Cancer Foundation, and the Danish Council for Independent Research.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>