Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin team grows retina cells from skin-derived stem cells

25.08.2009
A team of scientists from the University of Wisconsin-Madison School of Medicine and Public Health has successfully grown multiple types of retina cells from two types of stem cells — suggesting a future in which damaged retinas could be repaired by cells grown from the patient's own skin.

Even sooner, the discovery will lead to laboratory models for studying genetically linked eye conditions, screening new drugs to treat those conditions and understanding the development of the human eye.

A Waisman Center research team led by David Gamm, an assistant professor of ophthalmology and visual sciences, and Jason Meyer, a research scientist, announced their discovery in the Aug. 24 edition of the Proceedings of the National Academy of Sciences.

"This is an important step forward for us, as it not only confirms that multiple retinal cells can be derived from human iPS cells using the Wisconsin approach, but also shows how similar the process is to normal human retinal development," Gamm says. "That is quite remarkable given that the starting cell is so different from a retinal cell and the whole process takes place in a plastic dish. We continue to be amazed at how deep we can probe into these early events and find that they mimic those found in developing retinas. Perhaps this is the way to close the gap between what we know about building a retina in mice, frogs and flies with that of humans."

Gamm says the work built on the strong tradition of stem cell research at UW-Madison. James Thomson, a School of Medicine and Public Health faculty member and director of regenerative medicine at the Morgridge Institute for Research on the UW-Madison campus, announced that he had made human stem cells from skin, called induced pluripotent stem (iPS cells), in November 2007. Su-Chun Zhang, UW-Madison professor of anatomy and a Waisman researcher, was among the first to create neural cells from embryonic stem cells. Zhang was also part of the Gamm lab's retinal study. Meyer says the retina project began by using embryonic stem cells, but incorporated the iPS cells as they became available. Ultimately, the group was able to grow multiple types of retina cells beginning with either type of stem cell, starting with a highly enriched population of very primitive cells with the potential to become retina. This is critical, as it reduces contamination from unwanted cells early in the process. In normal human development, embryonic stem cells begin to differentiate into more specialized cell types about five days after fertilization. The retina develops from a group of cells that arise during the earliest stages of the developing nervous system. The Wisconsin team took cells from skin, turned them back into cells resembling embryonic stem cells, then triggered the development of retinal cell types.

"This is one of the most comprehensive demonstrations of a cell-based system for studying all of the key events that lead to the generation of specialized neural cells,'' Meyer says. "It could serve as a foundation for unlocking the mechanisms that produce human retinal cells."

Because the group was successful using the iPS cells, they expect this advance to lead to studying retinal development in detail and treating conditions that are genetically linked. For example, skin from a patient with retinitis pigmentosa could be reprogrammed into iPS cells, then retina cells, which would allow researchers to screen large numbers of potential drugs for treating or curing the condition.

Likewise, someday ophthalmologists may be able to repair damage to the retina by growing rescue or repair cells from the patient's skin. Earlier this year, scientists from the University of Washington showed that human ES cells had the potential to replace retinal cells lost during disease in mice.

"We're able to produce significant numbers of photoreceptor cells and other retinal cell types using our system, which are lost in many disorders," Meyer says. Photoreceptors are light-sensitive cells that absorb light and transmit the image as an electrical signal to the brain.

The team had similar success in creating the multiple specialized types of retina cells from embryonic stem cells, underscoring the similarities between ES and iPS cells. However, Gamm emphasizes that there are differences between these cell types as well. More work is needed to understand their potential and their limitations.

Other members of Gamm's Waisman Center research team involved in this study include Elizabeth Capowski, Lynda Wright, Kyle Wallace, Rebecca Shearer and Erin McMillan.

The research was funded by the National Institutes of Health, the Foundation Fighting Blindness, the Walsh Family Foundation, the Lincy Foundation and the Retina Research Foundation.

Susan Lampert Smith | EurekAlert!
Further information:
http://www.uwhealth.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>