Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin scientists find genetic recipe to turn stem cells to blood

14.07.2014

The ability to reliably and safely make in the laboratory all of the different types of cells in human blood is one key step closer to reality.

Writing today in the journal Nature Communications, a group led by University of Wisconsin-Madison stem cell researcher Igor Slukvin reports the discovery of two genetic programs responsible for taking blank-slate stem cells and turning them into both red and the array of white cells that make up human blood.


Two transcription factors are all that is required to make blood from pluripotent stem cells. Following introduction of the factors, stem cells form endothelium (green) which subsequenty become blood cells (red). The process mimics the way blood is formed in the embryo.

Credit: Courtesy of Irina Elcheva and Akhilesh Kumar, Wisconsin National Primate Research Center

The research is important because it identifies how nature itself makes blood products at the earliest stages of development. The discovery gives scientists the tools to make the cells themselves, investigate how blood cells develop and produce clinically relevant blood products.

"This is the first demonstration of the production of different kinds of cells from human pluripotent stem cells using transcription factors," explains Slukvin, referencing the proteins that bind to DNA and control the flow of genetic information, which ultimately determines the developmental fate of undifferentiated stem cells.

During development, blood cells emerge in the aorta, a major blood vessel in the embryo. There, blood cells, including hematopoietic stem cells, are generated by budding from a unique population of what scientists call hemogenic endothelial cells. The new report identifies two distinct groups of transcription factors that can directly convert human stem cells into the hemogenic endothelial cells, which subsequently develop into various types of blood cells.

The factors identified by Slukvin's group were capable of making the range of human blood cells, including white blood cells, red blood cells and megakaryocytes, commonly used blood products.

"By overexpressing just two transcription factors, we can, in the laboratory dish, reproduce the sequence of events we see in the embryo" where blood is made, says Slukvin of the Department of Pathology and Laboratory Medicine in the UW School of Medicine and Public Health and the Wisconsin National Primate Research Center.

The method developed by Slukvin's group was shown to produce blood cells in abundance. For every million stem cells, the researchers were able to produce 30 million blood cells.

A critical aspect of the work is the use of modified messenger RNA to direct stem cells toward particular developmental fates. The new approach makes it possible to induce cells without introducing any genetic artifacts. By co-opting nature's method of making cells and avoiding all potential genetic artifacts, cells for therapy can be made safer.

"You can do it without a virus, and genome integrity is not affected," Slukvin notes. Moreover, while the new work shows that blood can be made by manipulating genetic mechanisms, the approach is likely to be true as well for making other types of cells with therapeutic potential, including cells of the pancreas and heart.

An unfulfilled aspiration, says Slukvin, is to make hematopoietic stem cells, multipotent stem cells found in bone marrow. Hematopoietic stem cells are used to treat some cancers, including leukemia and multiple myeloma. Devising a method for producing them in the lab remains a significant challenge.

"We still don't know how to do that," Slukvin notes, "but our new approach to making blood cells will give us an opportunity to model their development in a dish and identify novel hematopoietic stem cell factors."

The study was conducted under the umbrella of the Progenitor Cell Biology Consortium, run by National Heart, Lung and Blood Institute, part of the National Institutes of Health, and involved a collaboration of scientists at UW-Madison, the Morgridge Institute for Research, the University of Minnesota at the Twin Cities and the Houston Methodist Research Institute.

In addition to Slukvin, authors of the new report include Irina Elcheva, Vera Brok-Volchanskaya, Akhilesh Kumar, Patricia Liu, Jeong-Hee Lee, Lilian Tong and Maxim Vodyanik, all of the Wisconsin National Primate Research Center; Scott Swanson, Ron Stewart and James A. Thomson of the Morgridge Institute for Research; Michael Kyba of the University of Minnesota's Lillehei Heart Institute; and Eduard Yakubov and John Cooke of the Center for Cardiovascular Regeneration of the Houston Methodist Research Institute.

###

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

The research underpinning the new Nature Communications report was supported by the National Institutes of Health, grant numbers U01HL099773, U01HL100407, U01HL099997 and P51 RR000167, and the Charlotte Geyer Foundation.

Igor Slukvin | Eurek Alert!

Further reports about: Heart Medicine blood endothelial factors hematopoietic transcription

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>