Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wiring microbes to conduct and produce electricity faster

05.09.2013
A team of researchers in Ireland have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity (electron-exchange) more rapidly compared to unmodified electrodes.

Electron exchange is at the heart of all redox reactions occurring in the natural world, as well as in bioengineered systems: so called 'biolectrochemical systems'.


This shows wiring microbes to conduct and produce electricity faster.

Credit: Amit Kumara

Practical applications of these systems include current generation, wastewater treatment, and biochemical and biofuel production. The microbial-electrode interface is a sum of complex physical-chemical and biological interactions permitting microbes to exchange electrons with solid electrodes to produce bioelectrochemical systems.

In these systems the microbes, compete, and self-select electrode materials for electron exchange capabilities. However, to date this selection is not well understood yet electricity or chemicals can be produced using various substrates, including wastewater or waste gases, depending upon operational settings, says Amit Kumar, who worked under the leadership of Dónal Leech at the National University of Ireland Galway in Ireland.

The Biomolecular Electronics Research Laboratory has been working on probing conditions for selection of electrodes by microbes for several years, and we have recently adopted an approach to tailor the chemistry of electrode surfaces which will help us better understand the selection mechanism says Amit Kumar and Dónal Leech. Our first result shows that surfaces modified with nitrogen-containing amines result in higher and more rapid production of current, compared to those without this modification, when placed in microbial cultures.

Next on our researcher agenda is to elucidate the selection mechanism using a range of surface modifications and microbial cultures.

ADDITIONAL AUTHORS:

Amit Kumara&,b, Peter Ó Conghailea, Piet Lensb and Dónal Leecha
aSchool of Chemistry & Ryan Institute, National University of Ireland Galway, Ireland.

bDepartment of Environmental Engineering and Water Technology, UNESCO-IHE, Delft, the Netherlands. Email amit.ugent@gmail.com

POPULAR TITLE:

Wiring microbes to conduct and produce electricity faster

The work was performed at the Biomolecular Electronics Research Laboratory (National University of Ireland, Galway).

Who did the work: Amit Kumar and co-authors

Funding source: European Commission, Marie Curie Program- Intra European Fellowship

Meeting: Gordon Research Conference, Applied & Environmental Microbiology

Exploring and Exploiting the Depths of the Microbial Biosphere

July, 2013, Mount Holyoke College, South Hadley, MA

Full study just published online in

RC Advances
Arylamine functionalization of carbon anodes for improved microbial electrocatalysis
Amit Kumar, Peter Ó Conghaile, Krishna Katuri, Piet Lens and Dónal Leech
RSC Adv., 2013, online at http://pubs.rsc.org/en/Content/ArticleLanding/2013/RA/c3ra42953a Or http://dx.doi.org/10.1039/c3ra42953a

Amit Ugent | EurekAlert!
Further information:
http://www.nuigalway.ie/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>