Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wired for Sound: a Small Fish’s Brain Illustrates How People and Other Vertebrates Produce Sounds

Cornell University researchers have identified regions of a fish brain that reveal the basic circuitry for how humans and other vertebrates generate sound used for social communication.

In a study of midshipman fish, published online today (June 14) in Nature Communications, the researchers identified two distinct groups of neurons that independently control the duration and the frequency of sounds used for calling. While human speech and bird songs are far more complex than the grunts and hoots produced by some fish, the study provides a very basic wiring diagram of how the brain allows vertebrates to vocalize.

“If you can understand the simplest system, it provides a road map for understanding the fundamental working units in the central nervous system for how you build a vocal system,” said Andrew Bass, Cornell professor of neurobiology and behavior and senior author of the paper.

In a 2008 Science paper, Bass and colleagues identified this same region of the brain in larval midshipman fish, showing how it is present in the brains of other animals, including primates. This suggests that the vocal networks in all vertebrates evolved from an ancestrally shared brain area that originated in fishes.

... more about:
»Bass »Brain »Small Molecule »Wired »vertebrates

“Studies like these allow us to trace the evolutionary history of the brain,” Bass said. “All animals, including humans, share many brain circuits for complex behaviors, including the use of sounds for social communication.”

Co-authors include lead author Boris Chagnaud, postdoctoral researcher in the Bass lab, and Robert Baker, a researcher at New York University’s Langone Medical Center; the authors collaborated at the Marine Biological Laboratory at Woods Hole, Mass. The study was funded by the Grass Foundation and National Institutes of Health.

Contact: Joe Schwartz
Phone: (607) 254-6235
Contact Joe Schwartz for information about Cornell's TV and radio studios.

Joe Schwartz | Newswise Science News
Further information:

Further reports about: Bass Brain Small Molecule Wired vertebrates

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>