Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wired up and ready to glow

13.12.2010
Linking silicon and carbon double bonds into an extended network with bulky molecules produces air-stable and photo-responsive crystals

Thirty years ago, no one believed that elements other than carbon, nitrogen, and oxygen could form double bonds at room temperature. But the discovery of ‘kinetic protection’ ligands—large, bulky molecules that trap heavy atoms into multiply-bonded arrangements—forced a textbook rewrite.

Researchers soon found that unsaturated bonds in newly synthesized substances such as disilenes, which have double silicon–silicon connections, generated chemical reactivity unlike any materials seen before.

Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have now discovered a way to make disilenes into thermally stable, light-emitting crystals by combining them with aromatic hydrocarbons(1). The key to their approach is a protecting ligand known as ‘Eind’ that is rigid enough to lock carbon and silicon atoms into a wire-like network.

Atoms make double bonds by sharing electrons through banana-shaped regions of space known as ‘pi orbitals’. If enough pi orbitals exist in a molecule, they can overlap and create conjugated pathways that allow for easy movement of electrons—properties that make such materials extremely responsive to light.

Incorporating disilenes into organic conjugated systems could produce enhanced photo-activity, but positioning two types of double bonds in one geometric plane for maximum pi orbital overlap is difficult. In 2007, Tamao and his team solved this problem by developing Eind ligands to protect a disilene–benzene compound(2). Eind groups have a stiff framework of three fused hydrocarbon rings that encapsulate the pi network and force it into a planar geometry by stacking perpendicular to it, which enabled the disilene–benzene product to be isolated as a fluorescent orange solid.

In their latest work, the researchers investigated the effects of extended organic pi conjugation by adding naphthalene and fluorene groups—aromatic molecules nearly twice the size of benzene rings—to an Eind-protected disilene. X-ray analysis revealed that the resulting red crystals also had planar silicon–carbon conjugation, a structure that produced intense fluorescent light emissions after ultraviolet irradiation (Fig. 1). “We were excited to see such strong solid-state emissions even at room temperature,” says Megumi Kobayashi, a co-author of the study.

Furthermore, these novel compounds showed unprecedented thermal stability, a critical requirement for future optical applications. “Usually, compounds having unsaturated silicon bonds are reactive and air-sensitive,” says Tsukasa Matsuo, another co-author, “but our red disilenes are air-stable for almost one year.” The team is currently working on improving the solubility of disilene–aromatic molecules to help develop longer and more light-sensitive double bonded materials.

The corresponding author for this highlight is based at the Functional Element-Organic Chemistry Unit, RIKEN Advanced Science Institute

Journal information

1. Kobayashi, M., Matsuo, T., Fukunaga, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. Air-stable, room-temperature emissive disilenes with ð-extended aromatic groups. Journal of the American Chemical Society 132, 15162–15163 (2010).

2. Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. Journal of the American Chemical Society 129, 14164–14165 (2007).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>