Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wired up and ready to glow

13.12.2010
Linking silicon and carbon double bonds into an extended network with bulky molecules produces air-stable and photo-responsive crystals

Thirty years ago, no one believed that elements other than carbon, nitrogen, and oxygen could form double bonds at room temperature. But the discovery of ‘kinetic protection’ ligands—large, bulky molecules that trap heavy atoms into multiply-bonded arrangements—forced a textbook rewrite.

Researchers soon found that unsaturated bonds in newly synthesized substances such as disilenes, which have double silicon–silicon connections, generated chemical reactivity unlike any materials seen before.

Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have now discovered a way to make disilenes into thermally stable, light-emitting crystals by combining them with aromatic hydrocarbons(1). The key to their approach is a protecting ligand known as ‘Eind’ that is rigid enough to lock carbon and silicon atoms into a wire-like network.

Atoms make double bonds by sharing electrons through banana-shaped regions of space known as ‘pi orbitals’. If enough pi orbitals exist in a molecule, they can overlap and create conjugated pathways that allow for easy movement of electrons—properties that make such materials extremely responsive to light.

Incorporating disilenes into organic conjugated systems could produce enhanced photo-activity, but positioning two types of double bonds in one geometric plane for maximum pi orbital overlap is difficult. In 2007, Tamao and his team solved this problem by developing Eind ligands to protect a disilene–benzene compound(2). Eind groups have a stiff framework of three fused hydrocarbon rings that encapsulate the pi network and force it into a planar geometry by stacking perpendicular to it, which enabled the disilene–benzene product to be isolated as a fluorescent orange solid.

In their latest work, the researchers investigated the effects of extended organic pi conjugation by adding naphthalene and fluorene groups—aromatic molecules nearly twice the size of benzene rings—to an Eind-protected disilene. X-ray analysis revealed that the resulting red crystals also had planar silicon–carbon conjugation, a structure that produced intense fluorescent light emissions after ultraviolet irradiation (Fig. 1). “We were excited to see such strong solid-state emissions even at room temperature,” says Megumi Kobayashi, a co-author of the study.

Furthermore, these novel compounds showed unprecedented thermal stability, a critical requirement for future optical applications. “Usually, compounds having unsaturated silicon bonds are reactive and air-sensitive,” says Tsukasa Matsuo, another co-author, “but our red disilenes are air-stable for almost one year.” The team is currently working on improving the solubility of disilene–aromatic molecules to help develop longer and more light-sensitive double bonded materials.

The corresponding author for this highlight is based at the Functional Element-Organic Chemistry Unit, RIKEN Advanced Science Institute

Journal information

1. Kobayashi, M., Matsuo, T., Fukunaga, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. Air-stable, room-temperature emissive disilenes with ð-extended aromatic groups. Journal of the American Chemical Society 132, 15162–15163 (2010).

2. Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. Journal of the American Chemical Society 129, 14164–14165 (2007).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>