Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wired up and ready to glow

13.12.2010
Linking silicon and carbon double bonds into an extended network with bulky molecules produces air-stable and photo-responsive crystals

Thirty years ago, no one believed that elements other than carbon, nitrogen, and oxygen could form double bonds at room temperature. But the discovery of ‘kinetic protection’ ligands—large, bulky molecules that trap heavy atoms into multiply-bonded arrangements—forced a textbook rewrite.

Researchers soon found that unsaturated bonds in newly synthesized substances such as disilenes, which have double silicon–silicon connections, generated chemical reactivity unlike any materials seen before.

Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have now discovered a way to make disilenes into thermally stable, light-emitting crystals by combining them with aromatic hydrocarbons(1). The key to their approach is a protecting ligand known as ‘Eind’ that is rigid enough to lock carbon and silicon atoms into a wire-like network.

Atoms make double bonds by sharing electrons through banana-shaped regions of space known as ‘pi orbitals’. If enough pi orbitals exist in a molecule, they can overlap and create conjugated pathways that allow for easy movement of electrons—properties that make such materials extremely responsive to light.

Incorporating disilenes into organic conjugated systems could produce enhanced photo-activity, but positioning two types of double bonds in one geometric plane for maximum pi orbital overlap is difficult. In 2007, Tamao and his team solved this problem by developing Eind ligands to protect a disilene–benzene compound(2). Eind groups have a stiff framework of three fused hydrocarbon rings that encapsulate the pi network and force it into a planar geometry by stacking perpendicular to it, which enabled the disilene–benzene product to be isolated as a fluorescent orange solid.

In their latest work, the researchers investigated the effects of extended organic pi conjugation by adding naphthalene and fluorene groups—aromatic molecules nearly twice the size of benzene rings—to an Eind-protected disilene. X-ray analysis revealed that the resulting red crystals also had planar silicon–carbon conjugation, a structure that produced intense fluorescent light emissions after ultraviolet irradiation (Fig. 1). “We were excited to see such strong solid-state emissions even at room temperature,” says Megumi Kobayashi, a co-author of the study.

Furthermore, these novel compounds showed unprecedented thermal stability, a critical requirement for future optical applications. “Usually, compounds having unsaturated silicon bonds are reactive and air-sensitive,” says Tsukasa Matsuo, another co-author, “but our red disilenes are air-stable for almost one year.” The team is currently working on improving the solubility of disilene–aromatic molecules to help develop longer and more light-sensitive double bonded materials.

The corresponding author for this highlight is based at the Functional Element-Organic Chemistry Unit, RIKEN Advanced Science Institute

Journal information

1. Kobayashi, M., Matsuo, T., Fukunaga, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. Air-stable, room-temperature emissive disilenes with ð-extended aromatic groups. Journal of the American Chemical Society 132, 15162–15163 (2010).

2. Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. Journal of the American Chemical Society 129, 14164–14165 (2007).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>