Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wired up and ready to glow

Linking silicon and carbon double bonds into an extended network with bulky molecules produces air-stable and photo-responsive crystals

Thirty years ago, no one believed that elements other than carbon, nitrogen, and oxygen could form double bonds at room temperature. But the discovery of ‘kinetic protection’ ligands—large, bulky molecules that trap heavy atoms into multiply-bonded arrangements—forced a textbook rewrite.

Researchers soon found that unsaturated bonds in newly synthesized substances such as disilenes, which have double silicon–silicon connections, generated chemical reactivity unlike any materials seen before.

Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako and Kyoto University have now discovered a way to make disilenes into thermally stable, light-emitting crystals by combining them with aromatic hydrocarbons(1). The key to their approach is a protecting ligand known as ‘Eind’ that is rigid enough to lock carbon and silicon atoms into a wire-like network.

Atoms make double bonds by sharing electrons through banana-shaped regions of space known as ‘pi orbitals’. If enough pi orbitals exist in a molecule, they can overlap and create conjugated pathways that allow for easy movement of electrons—properties that make such materials extremely responsive to light.

Incorporating disilenes into organic conjugated systems could produce enhanced photo-activity, but positioning two types of double bonds in one geometric plane for maximum pi orbital overlap is difficult. In 2007, Tamao and his team solved this problem by developing Eind ligands to protect a disilene–benzene compound(2). Eind groups have a stiff framework of three fused hydrocarbon rings that encapsulate the pi network and force it into a planar geometry by stacking perpendicular to it, which enabled the disilene–benzene product to be isolated as a fluorescent orange solid.

In their latest work, the researchers investigated the effects of extended organic pi conjugation by adding naphthalene and fluorene groups—aromatic molecules nearly twice the size of benzene rings—to an Eind-protected disilene. X-ray analysis revealed that the resulting red crystals also had planar silicon–carbon conjugation, a structure that produced intense fluorescent light emissions after ultraviolet irradiation (Fig. 1). “We were excited to see such strong solid-state emissions even at room temperature,” says Megumi Kobayashi, a co-author of the study.

Furthermore, these novel compounds showed unprecedented thermal stability, a critical requirement for future optical applications. “Usually, compounds having unsaturated silicon bonds are reactive and air-sensitive,” says Tsukasa Matsuo, another co-author, “but our red disilenes are air-stable for almost one year.” The team is currently working on improving the solubility of disilene–aromatic molecules to help develop longer and more light-sensitive double bonded materials.

The corresponding author for this highlight is based at the Functional Element-Organic Chemistry Unit, RIKEN Advanced Science Institute

Journal information

1. Kobayashi, M., Matsuo, T., Fukunaga, T., Hashizume, D., Fueno, H., Tanaka, K. & Tamao, K. Air-stable, room-temperature emissive disilenes with ð-extended aromatic groups. Journal of the American Chemical Society 132, 15162–15163 (2010).

2. Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. Journal of the American Chemical Society 129, 14164–14165 (2007).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>