Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Windows” into the Cell’s Interior - New Method Enables Deeper Insights into the Cell

19.03.2012
Cryo-electron tomography provides high-resolution, three-dimensional insights into the cell.

However, with this method only very small cells or thin peripheral regions of larger cells can be investigated directly. Scientists of the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich have now developed a procedure to provide access to cellular regions which were previously nearly inaccessible.


'Shock frozen' cell after treatment with the ion beam. Graphic: Alexander Rigort & Felix Bäuerlein / Copyright: MPI of Biochemistry

Using focused ion beam (FIB) technology, specific cellular material can be cut out, opening up thin “windows” into the cell’s interior. This alternative approach enables the preparation of larger cellular samples devoid of artefacts. The study was recently published in PNAS USA.

With cryo-electron tomography, pioneered by the Department of Molecular Structural Biology headed by Wolfgang Baumeister, researchers can now directly analyze three-dimensional cellular structures. The entire cell or individual cell components are “shock frozen” and enclosed in glass-like ice, thus preserving their spatial structure. The transmission electron microscope then enables the acquisition of two-dimensional projections from different perspectives. Finally, the scientists reconstruct a high-resolution three-dimensional volume from these images. However, the electron beam can penetrate only very thin specimens (for example bacteria cells) up to a thickness of 500 nanometers. Cells of higher organisms are clearly thicker. State-of-the-art electron microscopic preparation techniques are therefore necessary to make also larger objects accessible for cryo-electron tomography.
“The artefact-free and, in particular, targeted preparation of larger cells is a critical step,” explained Alexander Rigort, MPIB scientist. “With the traditional methods, we could never rule out that structures we wanted to investigate were changed.” The meaningfulness of the results was therefore limited, according to the biologist.

Using a focused ion beam microscope (FIB), researchers can now mill single layers of the frozen-hydrated cell and remove them in a controlled manner – thus rendering thin, tailor-made electron-transparent “windows”. An additional advantage of ion thinning is that mechanical sectioning artefacts are completely avoided. This method was originally developed for the material sciences. In structural biology the method shall now provide deeper insights into the molecular organization of the cell’s interior. The thinner the “windows” are, the higher the attainable resolution in the electron microscope. “Now precise insights into the macromolecular architecture of cell regions are possible that were previously nearly inaccessible for cryo-electron microscopy,” said Jürgen Plitzko, scientist at the MPIB.
Original Publication
A. Rigort, F. Bäuerlein, E. Villa, M. Eibauer, T. Laugks, W. Baumeister and J. M. Plitzko: Focused Ion Beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. USA, March 5, 2012
Doi:10.1073/pnas.1201333109.

Contact
Dr. Jürgen M. Plitzko
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: plitzko@biochem.mpg.de
http://www.biochem.mpg.de/baumeister

Dr. Alexander Rigort
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: rigort@biochem.mpg.de

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/baumeister

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>