Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why wind turbines can mean death for bats

27.08.2008
Power-generating wind turbines have long been recognized as a potentially life-threatening hazard for birds. But at most wind facilities, bats actually die in much greater numbers. Now, researchers reporting in Current Biology, a Cell Press journal, on August 26th think they know why.

Ninety percent of the bats they examined after death showed signs of internal hemorrhaging consistent with trauma from the sudden drop in air pressure (a condition known as barotrauma) at turbine blades. Only about half of the bats showed any evidence of direct contact with the blades.

"Because bats can detect objects with echolocation, they seldom collide with man-made structures," said Erin Baerwald of the University of Calgary in Canada. "An atmospheric-pressure drop at wind-turbine blades is an undetectable—and potentially unforeseeable—hazard for bats, thus partially explaining the large number of bat fatalities at these specific structures.

"Given that bats are more susceptible to barotrauma than birds, and that bat fatalities at wind turbines far outnumber bird fatalities at most sites, wildlife fatalities at wind turbines are now a bat issue, not a bird issue."

The respiratory systems of bats and birds differ in important ways, in terms of both their structure and their function. Bats' lungs, like those of other mammals, are balloon-like, with two-way airflow ending in thin flexible sacs surrounded by capillaries, the researchers explained. When outside pressure drops, those sacs can over-expand, bursting the capillaries around them. Bird lungs, on the other hand, are more rigid and tube-like, with one-way circular airflow passing over and around capillaries. That rigid system can more easily withstand sudden drops in air pressure.

The majority of bats killed at wind turbines are migratory bats that roost in trees, including hoary bats, eastern red bats, and silver-haired bats. While little is known about their population sizes, the researchers said, those deaths could have far-reaching consequences.

Bats typically live for many years, in some cases reaching ages of 30 or more. Most also have just one or two pups at a time, and not necessarily every year. "Slow reproductive rates can limit a population's ability to recover from crashes and thereby increase the risk of endangerment or extinction," said Robert Barclay, also at the University of Calgary, noting that migrating animals tend to be more vulnerable as it is.

All three species of migratory bats killed by wind turbines fly at night, eating thousands of insects—including many crop pests—per day as they go. Therefore, bat losses in one area could have very real effects on ecosystems miles away, along the bats' migration routes.

Baerwald said there is no obvious way to reduce the pressure drop at wind turbines without severely limiting their use. Because bats are more active when wind speeds are low, one strategy may be to increase the speed at which turbine blades begin to rotate during the bats' fall migration period.

The researchers include Erin F. Baerwald, Genevieve H. D'Amours, Brandon J. Klug and Robert M.R. Barclay of the University of Calgary in Calgary, AB Canada.

Cathleen Genova | EurekAlert!
Further information:
http://www.cell.com

Further reports about: Researchers Turbine bats crop pests fatalities pressure turbine blades wind turbines

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>