Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildflower colors tell butterflies how to do their jobs

10.01.2011
The recipe for making one species into two requires time and some kind of separation, like being on different islands or something else that discourages gene flow between the two budding species.

In the case of common Texas wildflowers that share meadows and roadside ditches, color-coding apparently does the trick.

Duke University graduate student Robin Hopkins has found the first evidence of a specific genetic change that helps two closely related wildflowers avoid creating costly hybrids. It results in one of the normally light blue flowers being tagged with a reddish color to appear less appetizing to the pollinating butterflies which prefer blue.

"There are big questions about evolution that are addressed by flower color," said Hopkins, who successfully defended her doctoral dissertation just weeks before seeing the same work appear in the prestigious journal Nature.

What Hopkins found, with her thesis adviser, Duke biology professor Mark Rausher, is the first clear genetic evidence for something called reinforcement in plants. Reinforcement keeps two similar proto-species moving apart by discouraging hybrid matings. Flower color had been expected to aid reinforcement, but the genes had not been found.

In animals or insects, reinforcement might be accomplished by a small difference in scent, plumage or mating rituals. But plants don't dance or choose their mates. So they apparently exert some choice by using color to discourage the butterflies from mingling their pollen, Hopkins said.

Where Phlox drummondii lives by itself, it has a periwinkle blue blossom. But where its range overlaps with Phlox cuspidata, which is also light blue, drummondii flowers appear darker and more red. Some individual butterflies prefer light blue blossoms and will go from blue to blue, avoiding the dark reds. Other individual butterflies prefer the reds and will stick with those. This "constancy" prevents hybrid crosses.

Hybrid offspring between drummondii and cuspidata turn out to be nearly sterile, making the next generation a genetic dead-end. The persistent force of natural selection tends to push the plants toward avoiding those less fruitful crosses, and encourages breeding true to type. In this case, selection apparently worked upon floral color.

Hopkins was able to find the genes involved in the color change by crossing a light blue drummondii with the red in greenhouse experiments. She found the offspring occurred in four different colors in the exact 9-to-3-to-3-to-1 ratios of classical Mendelian inheritance. "It was 2 in the morning when I figured this out," she said. "I almost woke up my adviser."

From there, she did standard genetics to find the exact genes. The change to red is caused by a recessive gene that knocks out the production of the plant's one blue pigment while allowing for the continued production of two red pigments.

Even where the red flowers are present, about 11 percent of each generation will be the nearly-sterile hybrids. But without color-coding, that figure would be more like 28 percent, Hopkins said. Why and how the butterflies make the distinction has yet to be discovered.

Hopkins will be continuing her research as a visiting scientist at the University of Texas, and the clear message from all of her advisers is "follow the butterflies. Everyone wants to know more about the butterflies!"

The research was supported by grants from the National Science Foundation.

CITATION: "Identification of two genes causing reinforcement in the Texas wildflower Phlox drummondii," Robin Hopkins and Mark D. Rausher. Nature, Advance Online Publication, Jan. 9, 2011 DOI:10.1038/nature09641

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>