Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildflower colors tell butterflies how to do their jobs

10.01.2011
The recipe for making one species into two requires time and some kind of separation, like being on different islands or something else that discourages gene flow between the two budding species.

In the case of common Texas wildflowers that share meadows and roadside ditches, color-coding apparently does the trick.

Duke University graduate student Robin Hopkins has found the first evidence of a specific genetic change that helps two closely related wildflowers avoid creating costly hybrids. It results in one of the normally light blue flowers being tagged with a reddish color to appear less appetizing to the pollinating butterflies which prefer blue.

"There are big questions about evolution that are addressed by flower color," said Hopkins, who successfully defended her doctoral dissertation just weeks before seeing the same work appear in the prestigious journal Nature.

What Hopkins found, with her thesis adviser, Duke biology professor Mark Rausher, is the first clear genetic evidence for something called reinforcement in plants. Reinforcement keeps two similar proto-species moving apart by discouraging hybrid matings. Flower color had been expected to aid reinforcement, but the genes had not been found.

In animals or insects, reinforcement might be accomplished by a small difference in scent, plumage or mating rituals. But plants don't dance or choose their mates. So they apparently exert some choice by using color to discourage the butterflies from mingling their pollen, Hopkins said.

Where Phlox drummondii lives by itself, it has a periwinkle blue blossom. But where its range overlaps with Phlox cuspidata, which is also light blue, drummondii flowers appear darker and more red. Some individual butterflies prefer light blue blossoms and will go from blue to blue, avoiding the dark reds. Other individual butterflies prefer the reds and will stick with those. This "constancy" prevents hybrid crosses.

Hybrid offspring between drummondii and cuspidata turn out to be nearly sterile, making the next generation a genetic dead-end. The persistent force of natural selection tends to push the plants toward avoiding those less fruitful crosses, and encourages breeding true to type. In this case, selection apparently worked upon floral color.

Hopkins was able to find the genes involved in the color change by crossing a light blue drummondii with the red in greenhouse experiments. She found the offspring occurred in four different colors in the exact 9-to-3-to-3-to-1 ratios of classical Mendelian inheritance. "It was 2 in the morning when I figured this out," she said. "I almost woke up my adviser."

From there, she did standard genetics to find the exact genes. The change to red is caused by a recessive gene that knocks out the production of the plant's one blue pigment while allowing for the continued production of two red pigments.

Even where the red flowers are present, about 11 percent of each generation will be the nearly-sterile hybrids. But without color-coding, that figure would be more like 28 percent, Hopkins said. Why and how the butterflies make the distinction has yet to be discovered.

Hopkins will be continuing her research as a visiting scientist at the University of Texas, and the clear message from all of her advisers is "follow the butterflies. Everyone wants to know more about the butterflies!"

The research was supported by grants from the National Science Foundation.

CITATION: "Identification of two genes causing reinforcement in the Texas wildflower Phlox drummondii," Robin Hopkins and Mark D. Rausher. Nature, Advance Online Publication, Jan. 9, 2011 DOI:10.1038/nature09641

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>