Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What is wild? - Odor attraction among different wildtype Drosophila

Vinegar flies (Drosophila melanogaster) show a highly selective behavior towards odor stimuli. A series of behavioral studies showed that a single olfactory stimulus is often not sufficient for immediate attraction to potential food sources or oviposition sites. Interestingly, the behavior differed between investigated D. melanogaster varieties, so-called "wildtypes".

Natural odors (bananas, mangos) were preferred by most flies, whereas artificial flavors induced a more differentiated behavior. (Current Biology Vol. 18, September 23, 2008)

These studies confirm what researchers in the field of Chemical Ecology have observed with other organisms: that the behavior of animals, as well as plant responses to biotic or abiotic stress, are less regulated by an individual signal, but rather by a complex composition and amount of particular volatile compounds.

In their experiments the scientists used different varieties of vinegar flies that had already been characterized neurophysiologically: Canton-S, Oregon-R-C, Oregon R-S, Berlin-K, and wild-type Berlin. Electroantennographic measurements conducted before the actual behavioral experiments showed that all fly varieties showed an identical physiological response to five different chemical stimuli. Also, the vitality and mobility of the animals was similar. Nevertheless, the behavior, measured in periods of 24 hours, was different depending on fly variety and food (odor) supply: some varieties responded fast, others very slow. Equivalent behavioral studies on three additional fly varieties that had only recently been included in the strain collection (Dalby-HL, Helsingborg-E, and Helsingborg-F), proved especially interesting: these varieties turned out to be particularly selective and displayed slower and less strong responses to fruity smells, and especially to single odor components. "These flies, which have only until recently been living in nature, are very likely to show the original phenotype of Drosophila melanogaster behavior: they respond - as other insect species also do - very selectively to host signals and do not just rely on one single odor that is stimulating their antennae. Moreover, the insects' behavior is not only regulated positively by attractive odors, but also negatively by deterring volatile signals, for instance emitted by fruits that are not on the animals' menu," says Bill Hansson, director of the Department of Evolutionary Neuroethology at the Max Planck Institute for Chemical Ecology in Jena.

D. melanogaster varieties that have been bred in laboratories for years, especially Canton-S and both Oregon-R-C and R-S, were not as selective in the experiments as the newly collected Swedish Helsingborg flies were. This may be the result of genetic differences between varieties that evolved in different geographical locations, or the consequence of artificial selection of the flies - in the course of breeding them in the labs of geneticists and neurobiologists. The experiments further showed that the different behaviors of the eight Drosophila varieties cannot be diagnosed just as impaired olfactory mechanisms linked to particular genetic flaws, for instance caused by the absence or the mutation of a specific odor receptor. The behaviors are rather the result of adaptations of evolving Drosophila melanogaster ecotypes to different habitats and living conditions, and therefore to different odor compositions.

Insect traps that use chemical attractants or pheromones to lure insects are becoming more and more important in modern agriculture. With the help of these traps, insect pests can be controlled, e.g. in vineyards and orchards. The traps are also used to monitor pest infestation levels in crop fields. The results of this study increases our understanding of insect odor-directed behavior, and will help to improve such insect traps and to develop more efficient ones.

Original article: Agnieszka Ruebenbauer, Fredrik Schlyter, Bill S. Hansson, Christer Löfstedt, Mattias C. Larsson: Genetic Variability and Robustness of Host Odor Preference in Drosophila melanogaster. Current Biology 18 (2008), 1438-1443.

Contact: Bill S. Hansson, Max Planck Institute for Chemical Ecology, Hans Knoell Str. 8, 07745 Jena, Germany
Tel.: +49 3641 57 1401
Pictures: Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology
Tel.: +49 3641 57-2110

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht How a fungus inhibits the immune system of plants
27.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>