Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is wild? - Odor attraction among different wildtype Drosophila

06.10.2008
Vinegar flies (Drosophila melanogaster) show a highly selective behavior towards odor stimuli. A series of behavioral studies showed that a single olfactory stimulus is often not sufficient for immediate attraction to potential food sources or oviposition sites. Interestingly, the behavior differed between investigated D. melanogaster varieties, so-called "wildtypes".

Natural odors (bananas, mangos) were preferred by most flies, whereas artificial flavors induced a more differentiated behavior. (Current Biology Vol. 18, September 23, 2008)

These studies confirm what researchers in the field of Chemical Ecology have observed with other organisms: that the behavior of animals, as well as plant responses to biotic or abiotic stress, are less regulated by an individual signal, but rather by a complex composition and amount of particular volatile compounds.

In their experiments the scientists used different varieties of vinegar flies that had already been characterized neurophysiologically: Canton-S, Oregon-R-C, Oregon R-S, Berlin-K, and wild-type Berlin. Electroantennographic measurements conducted before the actual behavioral experiments showed that all fly varieties showed an identical physiological response to five different chemical stimuli. Also, the vitality and mobility of the animals was similar. Nevertheless, the behavior, measured in periods of 24 hours, was different depending on fly variety and food (odor) supply: some varieties responded fast, others very slow. Equivalent behavioral studies on three additional fly varieties that had only recently been included in the strain collection (Dalby-HL, Helsingborg-E, and Helsingborg-F), proved especially interesting: these varieties turned out to be particularly selective and displayed slower and less strong responses to fruity smells, and especially to single odor components. "These flies, which have only until recently been living in nature, are very likely to show the original phenotype of Drosophila melanogaster behavior: they respond - as other insect species also do - very selectively to host signals and do not just rely on one single odor that is stimulating their antennae. Moreover, the insects' behavior is not only regulated positively by attractive odors, but also negatively by deterring volatile signals, for instance emitted by fruits that are not on the animals' menu," says Bill Hansson, director of the Department of Evolutionary Neuroethology at the Max Planck Institute for Chemical Ecology in Jena.

D. melanogaster varieties that have been bred in laboratories for years, especially Canton-S and both Oregon-R-C and R-S, were not as selective in the experiments as the newly collected Swedish Helsingborg flies were. This may be the result of genetic differences between varieties that evolved in different geographical locations, or the consequence of artificial selection of the flies - in the course of breeding them in the labs of geneticists and neurobiologists. The experiments further showed that the different behaviors of the eight Drosophila varieties cannot be diagnosed just as impaired olfactory mechanisms linked to particular genetic flaws, for instance caused by the absence or the mutation of a specific odor receptor. The behaviors are rather the result of adaptations of evolving Drosophila melanogaster ecotypes to different habitats and living conditions, and therefore to different odor compositions.

Insect traps that use chemical attractants or pheromones to lure insects are becoming more and more important in modern agriculture. With the help of these traps, insect pests can be controlled, e.g. in vineyards and orchards. The traps are also used to monitor pest infestation levels in crop fields. The results of this study increases our understanding of insect odor-directed behavior, and will help to improve such insect traps and to develop more efficient ones.

Original article: Agnieszka Ruebenbauer, Fredrik Schlyter, Bill S. Hansson, Christer Löfstedt, Mattias C. Larsson: Genetic Variability and Robustness of Host Odor Preference in Drosophila melanogaster. Current Biology 18 (2008), 1438-1443.

Contact: Bill S. Hansson, Max Planck Institute for Chemical Ecology, Hans Knoell Str. 8, 07745 Jena, Germany
Tel.: +49 3641 57 1401
hansson@ice.mpg.de
Pictures: Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology
Tel.: +49 3641 57-2110
overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/

More articles from Life Sciences:

nachricht Researchers at IST Austria define function of an enigmatic synaptic protein
22.11.2017 | Institute of Science and Technology Austria

nachricht Women and lung cancer – the role of sex hormones
22.11.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>