Wide heads give hammerheads exceptional stereo view

'Perhaps their visual field has been enhanced by their weird head shape,' says McComb, giving the sharks excellent stereovision and depth perception. However, according to McComb, there were two schools of thought on this theory. In 1942, G. Walls speculated that the sharks couldn't possibly have binocular vision because their eyes were stuck out on the sides of their heads.

However, in 1984, Leonard Campagno suggested that the sharks would have excellent depth perception because their eyes are so widely separated. 'In fact one of the things they say on TV shows is that hammerheads have better vision than other sharks,' says McComb, 'but no one had ever tested this'. Teaming up with Stephen Kajiura and Timothy Tricas, the trio decided to find out how wide a hammerhead's field of view is and whether they could have binocular vision and publish their results on November 27 2009 in the Journal of Experimental Biology at http://jeb.biologists.org.

Hammerheads come in all shapes and sizes so McComb and Kajiura, opted to work with species with heads ranging from the narrowest to the widest. Fishing for juvenile scalloped hammerheads off Hawaii and bonnethead sharks in the waters around Florida, the team successfully landed the fish and quickly transported them back to local labs to test the fish's eyesight.

The team tested the field of view in each shark's eyes by sweeping a weak light in horizontal and vertical arcs around each eye and recorded the eye's electrical activity. Comparing the hammerheads with pointy nosed species, the team found that the scalloped hammerheads had the largest monocular visual field, at an amazing 182 deg., and the bonnethead had a 176 deg. visual field, which was bigger than that of the pointy nosed blacknose and lemon sharks, at 172 deg. and 159 deg., respectively.

Having collected the animals' monocular visual fields, the team plotted the visual fields of both eyes on a chart of each fish's head to see whether they overlapped. Amazingly, they did. The scalloped hammerhead had a massive binocular overlap of 32 deg. in front of their heads (three times the overlap in the pointy nosed species) while the bonnet head had a respectable 13 deg. overlap. And when the team measured the binocular overlap of the shark with the widest hammerhead, the winghead shark, it was a colossal 48 deg. The hammerheads' wide heads certainly improved their binocular vision and depth perception.

Finally, the team factored in the sharks' eye and head movements and found that the forward binocular overlaps rocketed to an impressive 69 deg. for the scalloped hammerheads and 52 deg. for the bonnetheads. Even more surprisingly, the team realised that the bonnethead and scalloped hammerheads have an excellent stereo rear-view: they have a full 360 deg. view of the world.

'When we first started the project we didn't think that the hammerhead would have binocular vision at all. We thought no way; we were out there to dispel the myth,' says McComb. But despite their preconceptions, the team have shown that the sharks not only have outstanding forward stereovision and depth perception, but a respectable stereo rear view too, which is even better than the TV shows would have us believe.

Media Contact

Kathryn Knight EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Evidence for reversible oxygen ion movement during electrical pulsing

…enabler of the emerging ferroelectricity in binary oxides. In a recent study published in Materials Futures, researchers have uncovered a pivotal mechanism driving the emergence of ferroelectricity in binary oxides….

Next-generation treatments hitch a ride into cancer cells

Researchers from Osaka University discover that opening a channel into cancer cells helps antisense oligonucleotide drugs reach their targets. Antisense oligonucleotides (ASOs) are next-generation drugs that can treat disease by…

Boron deficiency: oilseed rape reacts as with infection and pest infestation

Genetic mechanisms uncovered… Boron deficiency has a devastating effect on oilseed rape and related plants. However, little is known about the underlying genetic mechanisms. A study shows that the response…

Partners & Sponsors