Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wide heads give hammerheads exceptional stereo view

30.11.2009
Hammerhead sharks are some of the Ocean's most distinctive residents. 'Everyone wants to understand why they have this strange head shape,' says Michelle McComb from Florida Atlantic University. One possible reason is the shark's vision.

'Perhaps their visual field has been enhanced by their weird head shape,' says McComb, giving the sharks excellent stereovision and depth perception. However, according to McComb, there were two schools of thought on this theory. In 1942, G. Walls speculated that the sharks couldn't possibly have binocular vision because their eyes were stuck out on the sides of their heads.

However, in 1984, Leonard Campagno suggested that the sharks would have excellent depth perception because their eyes are so widely separated. 'In fact one of the things they say on TV shows is that hammerheads have better vision than other sharks,' says McComb, 'but no one had ever tested this'. Teaming up with Stephen Kajiura and Timothy Tricas, the trio decided to find out how wide a hammerhead's field of view is and whether they could have binocular vision and publish their results on November 27 2009 in the Journal of Experimental Biology at http://jeb.biologists.org.

Hammerheads come in all shapes and sizes so McComb and Kajiura, opted to work with species with heads ranging from the narrowest to the widest. Fishing for juvenile scalloped hammerheads off Hawaii and bonnethead sharks in the waters around Florida, the team successfully landed the fish and quickly transported them back to local labs to test the fish's eyesight.

The team tested the field of view in each shark's eyes by sweeping a weak light in horizontal and vertical arcs around each eye and recorded the eye's electrical activity. Comparing the hammerheads with pointy nosed species, the team found that the scalloped hammerheads had the largest monocular visual field, at an amazing 182 deg., and the bonnethead had a 176 deg. visual field, which was bigger than that of the pointy nosed blacknose and lemon sharks, at 172 deg. and 159 deg., respectively.

Having collected the animals' monocular visual fields, the team plotted the visual fields of both eyes on a chart of each fish's head to see whether they overlapped. Amazingly, they did. The scalloped hammerhead had a massive binocular overlap of 32 deg. in front of their heads (three times the overlap in the pointy nosed species) while the bonnet head had a respectable 13 deg. overlap. And when the team measured the binocular overlap of the shark with the widest hammerhead, the winghead shark, it was a colossal 48 deg. The hammerheads' wide heads certainly improved their binocular vision and depth perception.

Finally, the team factored in the sharks' eye and head movements and found that the forward binocular overlaps rocketed to an impressive 69 deg. for the scalloped hammerheads and 52 deg. for the bonnetheads. Even more surprisingly, the team realised that the bonnethead and scalloped hammerheads have an excellent stereo rear-view: they have a full 360 deg. view of the world.

'When we first started the project we didn't think that the hammerhead would have binocular vision at all. We thought no way; we were out there to dispel the myth,' says McComb. But despite their preconceptions, the team have shown that the sharks not only have outstanding forward stereovision and depth perception, but a respectable stereo rear view too, which is even better than the TV shows would have us believe.

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>