Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why plants in the office make us more productive

01.09.2014

'Green' offices with plants make staff happier and more productive than 'lean' designs stripped of greenery, new research shows.

In the first field study of its kind, published today, researchers found enriching a 'lean' office with plants could increase productivity by 15%.

The team examined the impact of 'lean' and 'green' offices on staff's perceptions of air quality, concentration, and workplace satisfaction, and monitored productivity levels over subsequent months in two large commercial offices in the UK and The Netherlands.

Lead researcher Marlon Nieuwenhuis, from Cardiff University's School of Psychology, said: "Our research suggests that investing in landscaping the office with plants will pay off through an increase in office workers' quality of life and productivity.

"Although previous laboratory research pointed in this direction, our research is, to our knowledge, the first to examine this in real offices, showing benefits over the long term. It directly challenges the widely accepted business philosophy that a lean office with clean desks is more productive."

The research showed plants in the office significantly increased workplace satisfaction, self-reported levels of concentration, and perceived air quality.

Analyses into the reasons why plants are beneficial suggests that a green office increases employees' work engagement by making them more physically, cognitively, and emotionally involved in their work.

Co-author Dr Craig Knight, from the University of Exeter, said: "Psychologically manipulating real workplaces and real jobs adds new depth to our understanding of what is right and what is wrong with existing workspace design and management. We are now developing a template for a genuinely smart office."

Professor Alex Haslam, from The University of Queensland's School of Psychology, who also co-authored the study added: "The 'lean' philosophy has been influential across a wide range of organisational domains. Our research questions this widespread conviction that less is more. Sometimes less is just less".

Marlon Nieuwenhuis added: "Simply enriching a previously Spartan space with plants served to increase productivity by 15% - a figure that aligns closely with findings in previously conducted laboratory studies. This conclusion is at odds with the present economic and political zeitgeist as well as with modern 'lean' management techniques, yet it nevertheless identifies a pathway to a more enjoyable, more comfortable and a more profitable form of office-based working."

Kenneth Freeman, Head of Innovation at interior landscaping company Ambius, who were involved in the study, said: "We know from previous studies that plants can lower physiological stress, increase attention span and improve well-being. But this is the first long term experiment carried out in a real-life situation which shows that bringing plants into offices can improve well-being and make people feel happier at work. Businesses should rethink their lean processes, not only for the health of the employees, but for the financial health of the organisation."

###

The study involved academics from the University of Exeter; the University of Groningen in The Netherlands, and the University of Queensland, Australia.

Eleanor Gaskarth | Eurek Alert!
Further information:
http://www.exeter.ac.uk

Further reports about: Exeter Psychology concentration developing productivity techniques

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>