White rot fungus boosts ethanol production from corn stalks, cobs and leaves

Their study on using the fungus to break down the tough cellulose and related material in this so-called “corn stover” to free up sugars for ethanol fermentation appears in the ACS' journal Industrial & Engineering Chemistry Research.

Yebo Li and colleagues explain that corn ethanol supplies are facing a crunch because corn is critical for animal feed and food. They note that the need for new sources of ethanol has shifted attention to using stover, which is the most abundant agricultural residue in the U.S., estimated at 170-256 million tons per year. The challenge is to find a way to break down tough cellulose material in cobs, stalks and leaves – so that sugars inside can be fermented to ethanol.

Previous studies indicated that the microbe Ceriporiopsis subvermispora, known as a white rot fungus, showed promise for breaking down the tough plant material prior to treatment with enzymes to release the sugars. To advance that knowledge, they evaluated how well the fungus broke down the different parts of corn stover and improved the sugar yield.

Treating stover with the white rot fungus for one month enabled them to extract up to 30 percent more sugar from the leaves and 50 percent more from the stalks and cobs. Because corn leaves are useful for controlling soil erosion when left in the field, harvesting only the cobs and stalks for ethanol production may make the most sense in terms of sustainable agriculture, the report suggests.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors