Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘White-eyes’ Form New Species Faster than Any Other Bird

28.01.2009
Island-dwelling white-eyes have long been dubbed “great speciators” for their apparent ability to rapidly form new species across geographies where other birds show little or no diversification.

A family of island-dwelling birds form new species faster than any other known bird, according to a University of Kansas researcher who used modern genetic techniques to answer an 80-year-old question about how fast new bird species can form.

New data show that birds in the family Zosteropidae — commonly known as white-eyes for the ring of white feathers around their eyes — have formed new species faster than any known bird.

Some island-dwelling white-eyes have long been dubbed “great speciators” for their apparent ability to rapidly form new species across geographies where other birds show little or no diversification, said Rob Moyle, ornithology curator at KU’s Biodiversity Institute and an author of a study of white-eyes published the week of Jan. 26.

Moyle, along with Chris Filardi of the American Museum of Natural History; Catherine Smith of the University of Washington; and Jared Diamond of the University of California-Los Angeles, has been able to reconstruct key aspects of these birds’ evolutionary history using genetic analyses. The authors used DNA sequences and a variety of analytical methods to determine that most of the family speciated at rates among the fastest of any known vertebrate.

More than 100 species in the family have spread across vast regions from Asia to Africa and to far-flung islands. Despite this ability to disperse over long distances, some species remain separated by water gaps as narrow as 2.2 kilometers and yet show no inclination to cross.

“As we started to compile the data, we were shocked,” said Moyle. “White-eye species from across the family’s range had strikingly similar gene sequences, indicating a recent origin and incredibly rapid diversification.”

The authors of the study, published in the prominent journal Proceedings of the National Academy of Sciences, assert that traits of white-eyes may have helped them diversify. These include sociability and the ability to survive in a variety of habitats. Some species also may have become more sedentary and unwilling to cross narrow water gaps.

The idea of “great speciators” has been gestating for nearly 80 years. Ernst Mayr and Diamond coined the term after they had observed birds in the Solomon Islands. Each island the men visited had a different white-eye species, whereas the species of other birds did not vary across the archipelago. They proposed that the variation was driven by traits intrinsic to white-eyes.

“I am delighted to see this molecular evidence supporting ideas that I had only been able to guess at over the last several decades,” said Diamond, a professor in the geography department at UCLA. “I know that Ernst Mayr, if he had still been alive, would have been delighted at this confirmation 78 years after he visited the Solomons.”

Jen Humphrey | Newswise Science News
Further information:
http://www.ur.ku.edu/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>