Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cell uses DNA 'catapult' to fight infection

15.08.2008
Eosiniphils help prevent uncontrolled bacterial invasion

U.S. and Swiss scientists have made a breakthrough in understanding how a type of white blood cell called the eosinophil may help the body to fight bacterial infections in the digestive tract, according to research published online this week in Nature Medicine.

Hans-Uwe Simon, from the University of Bern, Switzerland, Gerald J.Gleich, M.D., from the University of Utah School of Medicine, and their colleagues discovered that bacteria can activate eosinophils to release mitochondrial DNA in a catapult-like fashion to create a net that captures and kills bacteria.

"This is a fascinating finding," says Gleich, professor of dermatology and internal medicine at the University of Utah and a co-author of the study. "The DNA is released out of the cell in less than a second."

Eosiniphils, which comprise only 1 to 3 percent of human white blood cells, are known to be useful in the body's defense mechanisms against parasites. But their exact role in the immune system is not clear. Unlike other white blood cells, which are distributed throughout the body, eosinophils are found only in selected areas, including the digestive tract. Mitochondria – often referred to as the power plants of the cell – are components within cells that are thought to descend from ancient bacteria. Although most cellular DNA is contained in the nucleus, mitochondria have their own DNA.

Previous research has shown that eosinophils secrete toxic granule proteins during parasite infections and that these granule proteins kill bacteria. Simon, Gleich, and their colleagues found that when eosinophils are stimulated by infection, such as E. coli, they rapidly secrete mitochondrial DNA. This DNA binds to the granule proteins and forms a net that is able to trap and kill bacteria. The researchers also found higher levels of eosinophils were linked to improved survival and lower numbers of bacteria in the blood of mice with widespread bacterial infections.

The toxic proteins released by eosinophils are not always helpful to the body, however, and can damage nearby tissues. The inflammation in some types of asthma and Crohn's disease, a chronic inflammatory disease of the bowel, is attributed to eosinophils. In fact, Simon and his team first found evidence of these DNA-protein traps in tissue taken from the digestive tracts of people with Crohn's disease.

Earlier studies suggested another type of white blood cell – the neutrophil – also expels DNA and granule proteins to kill bacteria. However, this DNA comes from the nucleus and its release causes the neutrophil to die. The eosinophil is able to survive after expelling its mitochondrial DNA.

The researchers hope to learn more about how eosiniphils expel mitochondrial DNA. They speculate that the explosive mechanism might rely on stored energy, similar to the way plants release pollen into the air. "We don't know how eosinophils are capable of catapulting mitochondrial DNA so quickly," says Gleich.

Future investigation may focus on how this energy is generated and how this new knowledge can be applied to the treatment of bacterial infections and inflammatory diseases related to eosinophils.

Gerald J. Gleich | EurekAlert!
Further information:
http://www.healthcare.utah.edu/publicaffairs/

Further reports about: Cell DNA Infection blood eosinophil granule mitochondrial proteins

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>