Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Which came first, bi- or tricellular pollen? New research updates a classic debate

05.05.2014

The rise and diversification of bi- and tricellular pollen in flowering plants

With the bursting of spring, pollen is in the air. Most of the pollen that is likely tickling your nose and making your eyes water is being dispersed in a sexually immature state consisting of only two cells (a body cell and a reproductive cell) and is not yet fertile. While the majority of angiosperm species disperse their pollen in this early, bicellular, stage of sexual maturity, about 30% of flowering plants disperse their pollen in a more mature fertile stage, consisting of three cells (a body and two sperm cells). And then there are plants that do both.


Bicellular pollen of the pond lily, Nuphar advena at the time of its dispersal by insects. The vegetative body of the gametophyte consists of a single cell and takes up the entire space within the pollen grain. A separate "generative" cell, that will eventually give rise to the two sperm cells, is free within the cytoplasm of the "vegetative cell." Shown are the nuclei of these two cells stained with a DNA-binding fluorochrome -- the bright one is the generative nucleus and the large, faint vegetative nucleus is directly adjacent to and surrounding it.

Credit: Joseph Williams.

So which is the ancestral state, why did the earlier onset of maturity (the tricellular state) evolve so often, and is the tricellular state an evolutionary "dead end"? These questions, and others, were tackled in the classic work by James L. Brewbaker in 1967 and have been revisited in a new study, drawing upon an impressive database of over 2000 species, to determine which came first, tri- or bicellular pollen, and which leads to greater species diversity.

In the 1920s it was proposed that tricellular pollen had evolved independently within angiosperms numerous times and was an irreversible state. These predictions were supported by a classic, elegant, and notable study conducted by Brewbaker and published in the American Journal of Botany in 1967. Brewbaker used data from 1,908 species in one of the first large-scale tests of an evolutionary developmental hypothesis. He mapped pollen state (bi- vs tri-) onto a phylogenetic tree and found that tricellular families always appeared to be nested within bicellular families. He thus concluded that bicellular pollen was ancestral and had given rise to tricellular pollen multiple times. He also concluded that tricellular pollen never seemed to give rise to bicellular pollen.

Joseph Williams, an associate professor at the University of Tennessee, has had a long-standing interest in the reproductive biology of flowering plants, and is particularly interested in the evolution of development of ancient flowering plants. As part of the Centennial Celebration of the American Journal of Botany, Williams and co-authors (University of Tennessee and Creighton University) decided to re-examine the core questions that Brewbaker tested using modern, updated phylogenies and many more species than Brewbaker had available to him 50 years ago (http://www.amjbot.org/content/101/4/559.full.pdf+html).

"I think many of us who did their graduate work during the '60s through the early '90s saw our first flowering plant phylogenetic tree when we opened the October 1967 issue of American Journal of Botany to Jim Brewbaker's two-page-wide tree comprising 265 families," comments Williams (http://www.jstor.org/stable/2440530?seq=4). "That he had only constructed the phylogeny to answer a question about the evolution of pollen development was even more impressive."

"Our Centennial Review paper moved from being a straightforward review to a research paper," explains Williams, "because new methods for studying evolutionary rates of binary traits had just come out, and I thought: Why not redo Brewbaker's analysis with modern methods? Coincidentally, we had been collecting data on pollen cell number for the last seven years, so we had a great dataset in hand. To his credit, Brewbaker had already anticipated all the important questions, so you could say that our paper just added clarity to the nearly 50-year-old answers he suggested."

Indeed, Williams and co-authors expanded the Brewbaker dataset by including 2,511 species for which they modeled trait evolution (tri- vs bicellular pollen) using a modern (2013) seed plant phylogeny and two different sets of analyses.

Much to their surprise, the results from their analyses did not strongly support a bicellular ancestry, contrary to Brewbaker's findings, and, in fact, were ambiguous as to the ancestral state. While one analysis pointed to a tricellular ancestry, another analysis—which allowed evolutionary rates of the traits to vary across a phylogeny—found more uncertainty at the base, with a tricellular ancestor only slightly more likely than a bicellular ancestor.

Interestingly, they also found that both bi- and tricellular lineages gave rise to each other. Thus, their analyses debunked the long-standing assumption that pollen states could only evolve in one direction, namely from bi- to tricellular, and that tricellularity was a "dead end."

"Furthermore, our study showed that despite the recurrent evolution of tricellular pollen, those lineages with tricellular pollen actually had slower evolutionary rates," adds Williams. "Tricellular lineages had both reduced net speciation rates (speciation minus extinction) and reduced rates of reverting to the bicellular state."

In other words, even though tricellular species are formed often, suggesting an advantage to this dispersal state, tricellular lineages evolve slowly. And the net effect is that bicellular species are more common than tricellular species.

The authors speculate further that ecology plays an important role in these findings.

"Tricellular pollen develops rapidly after pollination, and so it would be favored in many of the unique lifestyles of angiosperms that demand rapid reproduction, such as herbs, annuals, and herbaceous aquatics," Williams notes.

"But acquiring those kinds of habits has consequences. The pattern of tricellular lineages rarely re-evolving the bicellular state suggests a reduced ability to respond to changing pollen dispersal conditions over evolutionary time, which in turn has slowed their rate of diversification."

One of the ideas that Williams is interested in continuing to pursue is the conflict between the ecology of pollen dispersal (the free-living phase of pollen ontogeny) and the ecology of pollen tube growth after pollination (where pollen is protected and competes with other pollen for fertilization success).

"I'm currently working with large datasets that will allow me to look for correlations between dispersal traits—such as pollen dimensions, DNA content, cell number, pollen energy reserves, water content, pollination syndromes—and pollen tube performance traits—such as tube dimensions and elongation rates, style lengths and duration of growth," concludes Williams.

###

Joseph H. Williams, Mackenzie L. Taylor, and Brian C. O'Meara. Repeated evolution of tricellular (and bicellular) pollen. American Journal of Botany April 2014 101:559-571.

The full article in the link mentioned is Open Access at http://www.amjbot.org/content/101/4/559.full.pdf+html. Reporters may contact Richard Hund at ajb@botany.org for a copy of the article at any time.

The Botanical Society of America is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany for 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | Eurek Alert!

Further reports about: analyses ancestral dataset dispersal ecology methods phylogenetic reproductive rise species

More articles from Life Sciences:

nachricht Protein Shake-Up
27.03.2015 | Oak Ridge National Laboratory

nachricht How did the chicken cross the sea?
27.03.2015 | Michigan State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>