Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where DNA's copy machine pauses, cancer could be next

06.05.2014

Each time a human cell divides, it must first make a copy of its 46 chromosomes to serve as an instruction manual for the new cell. Normally, this process goes off without a hitch. But from time to time, the information isn't copied and collated properly, leaving gaps or breaks that the cell has to carefully combine back together.

Researchers have long recognized that some regions of the chromosome,called "fragile sites," are more prone to breakage and can be a breeding ground for human cancers. But they have struggled to understand why these weak spots in the genetic code occur in the first place.

A comprehensive mapping of the fragile sites in yeast by a team of Duke researchers shows that fragile sites appear in specific areas of the genome where the DNA-copying machinery is slowed or stalled, either by certain sequences of DNA or by structural elements. The study, which appears May 5 in Proceedings of the National Academy of Sciences, could give insight into the origins of many of the genetic abnormalities seen in solid tumors.

"Other studies have been limited to looking at fragile sites on specific genes or chromosomes," said Thomas D. Petes, Ph.D., the Minnie Geller professor of molecular genetics and microbiology at Duke University School of Medicine. "Ours is the first to examine thousands of these sites across the entire genome and ask what they might have in common."

The term "fragile sites" was first coined in the 1980s to describe the chromosome breaks that appeared whenever a molecule called DNA polymerase –- responsible for copying DNA -- was blocked in mammalian cells. Since that discovery, research in the yeast Saccharomyces cerevisiae has shown that certain DNA sequences can make the polymerase slow down or pause as it makes copies. However, none of them have shown how those delays result in fragile sites.

In this study, Petes wanted to find the link between the copier malfunction and its genetic consequences on a genome-wide scale. First, he knocked down the levels of DNA polymerase in yeast cells to ten-fold lower than normal. Then he used microarray or "gene chip" technology to map where segments of DNA had been rearranged, indicating that a fragile site had once been there.

After finding those fragile sites, his laboratory spent more than a year combing through the literature for any recurring themes among the genomic regions they had uncovered. Eventually they showed that the fragile sites were associated with sequences or structures that stalled DNA replication, esoteric entities such as inverted repeats, replication termination signals, and transfer RNA genes.

"We only published the tip of the iceberg -- there is a lot of work you don't see because the connections simply weren't significant enough. Even now, we didn't find any single sequence motif that would very clearly predict a fragile site," said Petes. "I think there are just a lot of ways to slow down replication, so there is not just one signal to indicate that would occur."

In addition, Petes found that these fragile sites created a surprisingly unstable genome, resulting in a chaotic milieu of rearrangements, duplications and deletions of pieces of DNA or even the gain or loss of entire chromosomes.

"The ability to analyze these sites on a genome-wide basis is an important advance," said Gray Crouse, Ph.D., an expert unaffiliated with the new study who is a professor of biology at Emory University. "It has been known for a long time that many cancer cells have an abnormal number of chromosomes, and many different chromosome rearrangements have been observed in various tumor cells. It is likely that there are many different causes of chromosome instability in cancer cells. The current work suggests that those chromosomal rearrangements observed at fragile sites and found in solid tumors may be due to breaks from perturbed replication."

###

The research was supported by grants from the National Institutes of Health National Institutes of Health (GM24110, GM52319, and T32-AI52080).

CITATION: "Genome-wide high-resolution mapping of chromosome fragile sites in Saccharomyces cerevisiae," Wei Song, Margaret Dominska, Patricia W. Greenwell, Thomas D. Petes. PNAS, May. 5, 2014. DOI: http://www.pnas.org/cgi/doi/10.1073/pnas.1406847111

Karl Bates | Eurek Alert!
Further information:
http://www.duke.edu

Further reports about: DNA Health breaks chromosomes duplications genes genome-wide replication sequences tumors

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>