Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where DNA's copy machine pauses, cancer could be next

06.05.2014

Each time a human cell divides, it must first make a copy of its 46 chromosomes to serve as an instruction manual for the new cell. Normally, this process goes off without a hitch. But from time to time, the information isn't copied and collated properly, leaving gaps or breaks that the cell has to carefully combine back together.

Researchers have long recognized that some regions of the chromosome,called "fragile sites," are more prone to breakage and can be a breeding ground for human cancers. But they have struggled to understand why these weak spots in the genetic code occur in the first place.

A comprehensive mapping of the fragile sites in yeast by a team of Duke researchers shows that fragile sites appear in specific areas of the genome where the DNA-copying machinery is slowed or stalled, either by certain sequences of DNA or by structural elements. The study, which appears May 5 in Proceedings of the National Academy of Sciences, could give insight into the origins of many of the genetic abnormalities seen in solid tumors.

"Other studies have been limited to looking at fragile sites on specific genes or chromosomes," said Thomas D. Petes, Ph.D., the Minnie Geller professor of molecular genetics and microbiology at Duke University School of Medicine. "Ours is the first to examine thousands of these sites across the entire genome and ask what they might have in common."

The term "fragile sites" was first coined in the 1980s to describe the chromosome breaks that appeared whenever a molecule called DNA polymerase –- responsible for copying DNA -- was blocked in mammalian cells. Since that discovery, research in the yeast Saccharomyces cerevisiae has shown that certain DNA sequences can make the polymerase slow down or pause as it makes copies. However, none of them have shown how those delays result in fragile sites.

In this study, Petes wanted to find the link between the copier malfunction and its genetic consequences on a genome-wide scale. First, he knocked down the levels of DNA polymerase in yeast cells to ten-fold lower than normal. Then he used microarray or "gene chip" technology to map where segments of DNA had been rearranged, indicating that a fragile site had once been there.

After finding those fragile sites, his laboratory spent more than a year combing through the literature for any recurring themes among the genomic regions they had uncovered. Eventually they showed that the fragile sites were associated with sequences or structures that stalled DNA replication, esoteric entities such as inverted repeats, replication termination signals, and transfer RNA genes.

"We only published the tip of the iceberg -- there is a lot of work you don't see because the connections simply weren't significant enough. Even now, we didn't find any single sequence motif that would very clearly predict a fragile site," said Petes. "I think there are just a lot of ways to slow down replication, so there is not just one signal to indicate that would occur."

In addition, Petes found that these fragile sites created a surprisingly unstable genome, resulting in a chaotic milieu of rearrangements, duplications and deletions of pieces of DNA or even the gain or loss of entire chromosomes.

"The ability to analyze these sites on a genome-wide basis is an important advance," said Gray Crouse, Ph.D., an expert unaffiliated with the new study who is a professor of biology at Emory University. "It has been known for a long time that many cancer cells have an abnormal number of chromosomes, and many different chromosome rearrangements have been observed in various tumor cells. It is likely that there are many different causes of chromosome instability in cancer cells. The current work suggests that those chromosomal rearrangements observed at fragile sites and found in solid tumors may be due to breaks from perturbed replication."

###

The research was supported by grants from the National Institutes of Health National Institutes of Health (GM24110, GM52319, and T32-AI52080).

CITATION: "Genome-wide high-resolution mapping of chromosome fragile sites in Saccharomyces cerevisiae," Wei Song, Margaret Dominska, Patricia W. Greenwell, Thomas D. Petes. PNAS, May. 5, 2014. DOI: http://www.pnas.org/cgi/doi/10.1073/pnas.1406847111

Karl Bates | Eurek Alert!
Further information:
http://www.duke.edu

Further reports about: DNA Health breaks chromosomes duplications genes genome-wide replication sequences tumors

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>