Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where cancer cells hide from the immune system

27.03.2014

FAU researchers have discovered that tumour cells can hide from antibody therapy in bone marrow

Scientists from the Division of Genetics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in collaboration with Universitätsklinikum Erlangen have made a breakthrough discovery in cancer research.

For the first time, scientists have been able to simulate the complexity of the human immune system and investigate where cancer cells hide when attacked by the immune system. This research is especially relevant for destroying cancer cells through antibody therapy and shows ways that cancer treatment can be improved today. The researchers recently published their findings in the renowned journal Cell Reports.*

Antibodies that are manufactured specifically to fight cancer cells are an essential part of treating breast cancer and lymphoma. They can detect and mark cancer cells in the body so that the malfunctioning cells can be destroyed by the immune system.

... more about:
»FAU »Genetics »MIT »chemotherapy »effects »immune »therapy »tumour

However, some cells may survive attacks by the immune system. In the worst case, this can cause tumours to return. 'A key question in cancer therapy is to find out where tumour cells can hide from the immune system,' states Prof. Dr. Falk Nimmerjahn from the Division of Genetics at FAU. 'If we know the answer to this, we can improve current drugs to target where the malformed cells are hiding'.

Two research teams, one from FAU and the other from the Massachusetts Institute of Technology (MIT, Cambridge) (Pallasch et al. Cell), have independently made important breakthroughs in this area. Both research teams were able to show that the effects of antibodies used in human cancer therapy are weakened if tumour cells are found in bone marrow.

'This gives us a unique opportunity to find out how we can improve the antibodies currently used in cancer treatment to remove all tumour cells so that there is actually a chance of curing patients,' says Dr. Anja Lux, research team leader, Division of Genetics, FAU. The significance of these findings is demonstrated by the ability of both research teams to simulate the complexity of the human immune system in their experiments which indicates that the results can be applied to humans with a greater probability.

Further preliminary investigations at MIT lead researchers to believe that a combination of chemotherapy and antibody therapy can lead to greater success in destroying cancer cells in bone marrow. This is an interesting preliminary result which the researchers in Erlangen are intending to take a step further.

'Now that we know where the cancer cells are hiding, we can improve antibody therapy to better activate immune cells in the bone marrow,' explains Prof. Nimmerjahn. This will help to avoid the harmful side effects of chemotherapy, reduce risk for patients and increase chances of curing patients.

References:
*Lux et al., Cell Reports 7, 1-13, 2014; doi:
Pallasch et al., Cell 156, 590-602, 2014

Contact for media:
Prof. Dr. Falk Nimmerjahn
falk.nimmerjahn@fau.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

Further reports about: FAU Genetics MIT chemotherapy effects immune therapy tumour

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>