Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where cancer cells hide from the immune system

27.03.2014

FAU researchers have discovered that tumour cells can hide from antibody therapy in bone marrow

Scientists from the Division of Genetics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in collaboration with Universitätsklinikum Erlangen have made a breakthrough discovery in cancer research.

For the first time, scientists have been able to simulate the complexity of the human immune system and investigate where cancer cells hide when attacked by the immune system. This research is especially relevant for destroying cancer cells through antibody therapy and shows ways that cancer treatment can be improved today. The researchers recently published their findings in the renowned journal Cell Reports.*

Antibodies that are manufactured specifically to fight cancer cells are an essential part of treating breast cancer and lymphoma. They can detect and mark cancer cells in the body so that the malfunctioning cells can be destroyed by the immune system.

... more about:
»FAU »Genetics »MIT »chemotherapy »effects »immune »therapy »tumour

However, some cells may survive attacks by the immune system. In the worst case, this can cause tumours to return. 'A key question in cancer therapy is to find out where tumour cells can hide from the immune system,' states Prof. Dr. Falk Nimmerjahn from the Division of Genetics at FAU. 'If we know the answer to this, we can improve current drugs to target where the malformed cells are hiding'.

Two research teams, one from FAU and the other from the Massachusetts Institute of Technology (MIT, Cambridge) (Pallasch et al. Cell), have independently made important breakthroughs in this area. Both research teams were able to show that the effects of antibodies used in human cancer therapy are weakened if tumour cells are found in bone marrow.

'This gives us a unique opportunity to find out how we can improve the antibodies currently used in cancer treatment to remove all tumour cells so that there is actually a chance of curing patients,' says Dr. Anja Lux, research team leader, Division of Genetics, FAU. The significance of these findings is demonstrated by the ability of both research teams to simulate the complexity of the human immune system in their experiments which indicates that the results can be applied to humans with a greater probability.

Further preliminary investigations at MIT lead researchers to believe that a combination of chemotherapy and antibody therapy can lead to greater success in destroying cancer cells in bone marrow. This is an interesting preliminary result which the researchers in Erlangen are intending to take a step further.

'Now that we know where the cancer cells are hiding, we can improve antibody therapy to better activate immune cells in the bone marrow,' explains Prof. Nimmerjahn. This will help to avoid the harmful side effects of chemotherapy, reduce risk for patients and increase chances of curing patients.

References:
*Lux et al., Cell Reports 7, 1-13, 2014; doi:
Pallasch et al., Cell 156, 590-602, 2014

Contact for media:
Prof. Dr. Falk Nimmerjahn
falk.nimmerjahn@fau.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

Further reports about: FAU Genetics MIT chemotherapy effects immune therapy tumour

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

For pollock surveys in Alaska, things are looking up

22.05.2015 | Agricultural and Forestry Science

Mission possible: This device will self-destruct when heated

22.05.2015 | Power and Electrical Engineering

NOAA's GOES-R satellite begins environmental testing

22.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>