Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where cancer cells hide from the immune system

27.03.2014

FAU researchers have discovered that tumour cells can hide from antibody therapy in bone marrow

Scientists from the Division of Genetics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in collaboration with Universitätsklinikum Erlangen have made a breakthrough discovery in cancer research.

For the first time, scientists have been able to simulate the complexity of the human immune system and investigate where cancer cells hide when attacked by the immune system. This research is especially relevant for destroying cancer cells through antibody therapy and shows ways that cancer treatment can be improved today. The researchers recently published their findings in the renowned journal Cell Reports.*

Antibodies that are manufactured specifically to fight cancer cells are an essential part of treating breast cancer and lymphoma. They can detect and mark cancer cells in the body so that the malfunctioning cells can be destroyed by the immune system.

... more about:
»FAU »Genetics »MIT »chemotherapy »effects »immune »therapy »tumour

However, some cells may survive attacks by the immune system. In the worst case, this can cause tumours to return. 'A key question in cancer therapy is to find out where tumour cells can hide from the immune system,' states Prof. Dr. Falk Nimmerjahn from the Division of Genetics at FAU. 'If we know the answer to this, we can improve current drugs to target where the malformed cells are hiding'.

Two research teams, one from FAU and the other from the Massachusetts Institute of Technology (MIT, Cambridge) (Pallasch et al. Cell), have independently made important breakthroughs in this area. Both research teams were able to show that the effects of antibodies used in human cancer therapy are weakened if tumour cells are found in bone marrow.

'This gives us a unique opportunity to find out how we can improve the antibodies currently used in cancer treatment to remove all tumour cells so that there is actually a chance of curing patients,' says Dr. Anja Lux, research team leader, Division of Genetics, FAU. The significance of these findings is demonstrated by the ability of both research teams to simulate the complexity of the human immune system in their experiments which indicates that the results can be applied to humans with a greater probability.

Further preliminary investigations at MIT lead researchers to believe that a combination of chemotherapy and antibody therapy can lead to greater success in destroying cancer cells in bone marrow. This is an interesting preliminary result which the researchers in Erlangen are intending to take a step further.

'Now that we know where the cancer cells are hiding, we can improve antibody therapy to better activate immune cells in the bone marrow,' explains Prof. Nimmerjahn. This will help to avoid the harmful side effects of chemotherapy, reduce risk for patients and increase chances of curing patients.

References:
*Lux et al., Cell Reports 7, 1-13, 2014; doi:
Pallasch et al., Cell 156, 590-602, 2014

Contact for media:
Prof. Dr. Falk Nimmerjahn
falk.nimmerjahn@fau.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

Further reports about: FAU Genetics MIT chemotherapy effects immune therapy tumour

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>