Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When Nerve Cells Detect Patterns for Acquired Knowledge


Researchers from Heidelberg and Graz investigate how neurons sample probability distributions

For observations based on sensory data, the human brain must constantly verify which "version" of reality underlies the perception. The answer is gleaned from probability distributions that are stored in the nerve cell network itself.

Sampling a probability distribution of handwritten numbers by a stochastic network

Mihai A. Petrovici

The neurons are able to detect patterns that reflect acquired knowledge. Applying mathematical methods, physicists from Heidelberg University and researchers from Graz University of Technology have proven this phenomenon in their investigations. The current research results, published in the journal "Physical Review", are of major significance in developing new types of computer systems.

One of the most important functions of our brain is to create an internal model of our environment. There are two categories of information available for this purpose – the acquired knowledge about known objects and a constant stream of sensory data that can be compared against and continually added to existing knowledge. These sensory data are the simplest, "directly" available building blocks of perception.

However, observations that are based on sensory data are often compatible with multiple "realities" at the same time, as the phenomenon of optical illusions clearly proves. The brain is therefore faced with the challenge of knowing all the possible versions of the underlying reality. To make this determination, the brain jumps back and forth between these versions of reality, sampling a probability distribution.

The researchers working with Heidelberg physicist Prof. Dr Karlheinz Meier studied this process with the help of formal mathematical methods applied at the level of individual nerve cells, called neurons. The model of individual neurons used is strictly deterministic. This means that each repeated stimulation from external stimuli always evokes the same response behaviour.

The brain, however, is a network of neurons that communicate with one another. When a nerve cell is sufficiently stimulated by its neighbour, it fires off a short electrical pulse, thereby stimulating other neurons. In a large network of active neurons, nerve cells become stochastic – their "response" is no longer determined, i.e., precisely predictable, but follows statistical probability rules.

"In our studies we were able to show that such neurons obtain their response from probability distributions that are stored in the network itself and that are sampled by the nerve cells," explains Prof. Meier. This is how neurons are able to detect patterns that reflect acquired knowledge. The research was conducted as part of the European Human Brain Project, in which the Heidelberg researchers under the direction of Karlheinz Meier are developing new computer systems using the brain as a model.

"The concept of statistical sampling of acquired probabilities is extremely well-suited for implementing a new computer architecture. It is one focus of the current research our working group is conducting," states the physicist, who teaches and pursues research at Heidelberg University's Kirchhoff Institute for Physics.

Original publication:
M.A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier: Stochastic inference with spiking neurons in the high-conductance state. Physical Review E 94, 042312 (published 20 October 2016), doi: 10.1103/PhysRevE.94.042312

Dr Mihai A. Petrovici
Kirchhoff Institute for Physics
Phone +49 6221 54-9897

Communications and Marketing
Press Office, phone +49 6221 54-2311

Weitere Informationen:

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Cells Nerve nerve cell nerve cells neurons new computer observations phenomenon

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>