Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When David beats Goliath

25.09.2014

Body size has long been recognized to play a key role in shaping species interactions, with larger species usually winning conflicts with their smaller counterparts.

But Queen’s University biologist Paul Martin has found that occasionally, small species of birds can dominate larger species during aggressive interactions, particularly when they interact with distantly related species.


The Sparkling Violetear Mulauco was one of the bird species biologist Paul Martin studied for his research into understanding why species live where they do.

The new findings provide evidence that the evolution of certain traits can allow species to overcome the disadvantage of a smaller size.

“We want to understand why species live where they do, and how different species partition resources, like food, in nature,” Dr. Martin explains. “This research feeds into that. The 'larger animal wins' rule that usually governs species interactions, and often influences where smaller species can live, is more likely to break down when the interacting species are distantly related.”

For his research, Dr. Martin examined the outcome of 23,362 aggressive interactions among 246 bird species pairs including vultures at carcasses, hummingbirds at nectar sources and antbirds and woodcreepers at army ant swarms.

The research looked at the outcome of aggressive contests for food among species as a function of their body size and evolutionary distance.

The research found that the advantages of large size declined with increased evolutionary distance between species — a pattern explained by the evolution of certain traits in smaller birds that enhanced their abilities in aggressive contests.

Specific traits that may provide advantages to small species in aggressive interactions included well-developed leg musculature and talons, enhanced flight acceleration and maneuverability and traits associated with aggression including testosterone and muscle development.

“This study examines broad patterns across many species, and now we would like to understand the details of these interactions by studying specific groups,” says Dr. Martin. “We really want to understand why some species can overcome the disadvantages of small size, while other species cannot.”

The research was done in collaboration with Cameron Ghalambor at Colorado State University in Fort Collins, who received a Good Family Visiting Faculty Research Fellowship to come to Queen's for the work.

The research was published in the latest issue of PLOS ONE.

Anne Craig | Eurek Alert!
Further information:
http://www.queensu.ca/gazette/stories/when-david-beats-goliath

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>