Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What's in a name? Everything -- if you're a fruit fly

28.10.2014

A global research effort has finally resolved a major biosecurity issue: four of the world's most destructive agricultural pests are actually one and the same.

For twenty years some of the world's most damaging pest fruit flies have been almost impossible to distinguish from each other. The ability to identify pests is central to quarantine, trade, pest management and basic research.


This is an Oriental fruit fly.

Credit: Ana Rodriguez

In 2009 a coordinated research effort got underway to definitively answer this question by resolving the differences, if any, between five of the most destructive fruit flies: the Oriental fruit fly, the Philippine fruit fly, the Invasive fruit fly, the Carambola fruit fly, and the Asian Papaya fruit fly. These species cause incalculable damage to horticultural industries and food security across Asia, Africa, the Pacific and parts of South America.

The Philippine fruit fly was formally recognised as the same species as the Asian Papaya fruit fly in 2013. The latest study goes further, conclusively demonstrating that they are also the same biological species as the Oriental and Invasive fruit flies. These four species have now been combined under the single name: Bactrocera dorsalis, the Oriental fruit fly. The closely-related Carambola fruit fly remains distinct.

Professor Tony Clarke, Chair of Fruit Fly Biology and Management from the Plant Biosecurity Cooperative Research Centre (PBCRC) and the Queensland University of Technology (QUT), believes the integrated multidisciplinary nature of the project leaves little doubt the species are identical.

"More than 40 researchers from 20 countries examined evidence across a range of disciplines, using morphological, molecular, cytogenetic, behavioural and chemoecological data to present a compelling case for this taxonomic change," he said.

"This outcome has major implications for global plant biosecurity, especially for developing countries in Africa and Asia," said Professor Clarke.

"For example, Invasive (now Oriental) fruit fly has devastated African fruit production with crop losses exceeding 80 per cent, widespread trade restrictions with refusal of shipments into Europe and Japan, and significant economic and social impacts to farming communities."

Keeping exotic fruit fly out is a major concern for Australian biosecurity agencies. While an outbreak of Papaya fruit fly near Cairns in the mid-1990s inflicted $A100 million in eradication and industry costs, current estimates rate the Oriental fruit fly as the biggest threat to Australian plant biosecurity, with the total cost to the nation of an invasion estimated at $A1 billion. Combining the four species will mean a major reassessment of Australia's exotic fruit fly risk.

"Globally, accepting these four pests as a single species will lead to improved international cooperation in pest management, more effective quarantine measures, reduced barriers to international trade, the wider application of established post-harvest treatments, improved fundamental research and, most importantly, enhanced food security for some of the world's poorest nations," said Professor Clarke.

###

The paper, 'B. papayae, B. invadens, and B. dorsalis synonymy', has been published in the journal Systematic Entomology: http://onlinelibrary.wiley.com/doi/10.1111/syen.12113/abstract and is a collaboration between 33 research organisations in 20 countries, supported by the Food and Agriculture Organisation of the United Nations and the International Atomic Energy Agency.

More information and interviews: Tony Steeper, PBCRC Communications Manager, 0417 697 470, t.steeper@pbcrc.com.au

Tony Steeper | Eurek Alert!
Further information:
http://pbcrc.com.au

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>