Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What's in a name? Everything -- if you're a fruit fly

28.10.2014

A global research effort has finally resolved a major biosecurity issue: four of the world's most destructive agricultural pests are actually one and the same.

For twenty years some of the world's most damaging pest fruit flies have been almost impossible to distinguish from each other. The ability to identify pests is central to quarantine, trade, pest management and basic research.


This is an Oriental fruit fly.

Credit: Ana Rodriguez

In 2009 a coordinated research effort got underway to definitively answer this question by resolving the differences, if any, between five of the most destructive fruit flies: the Oriental fruit fly, the Philippine fruit fly, the Invasive fruit fly, the Carambola fruit fly, and the Asian Papaya fruit fly. These species cause incalculable damage to horticultural industries and food security across Asia, Africa, the Pacific and parts of South America.

The Philippine fruit fly was formally recognised as the same species as the Asian Papaya fruit fly in 2013. The latest study goes further, conclusively demonstrating that they are also the same biological species as the Oriental and Invasive fruit flies. These four species have now been combined under the single name: Bactrocera dorsalis, the Oriental fruit fly. The closely-related Carambola fruit fly remains distinct.

Professor Tony Clarke, Chair of Fruit Fly Biology and Management from the Plant Biosecurity Cooperative Research Centre (PBCRC) and the Queensland University of Technology (QUT), believes the integrated multidisciplinary nature of the project leaves little doubt the species are identical.

"More than 40 researchers from 20 countries examined evidence across a range of disciplines, using morphological, molecular, cytogenetic, behavioural and chemoecological data to present a compelling case for this taxonomic change," he said.

"This outcome has major implications for global plant biosecurity, especially for developing countries in Africa and Asia," said Professor Clarke.

"For example, Invasive (now Oriental) fruit fly has devastated African fruit production with crop losses exceeding 80 per cent, widespread trade restrictions with refusal of shipments into Europe and Japan, and significant economic and social impacts to farming communities."

Keeping exotic fruit fly out is a major concern for Australian biosecurity agencies. While an outbreak of Papaya fruit fly near Cairns in the mid-1990s inflicted $A100 million in eradication and industry costs, current estimates rate the Oriental fruit fly as the biggest threat to Australian plant biosecurity, with the total cost to the nation of an invasion estimated at $A1 billion. Combining the four species will mean a major reassessment of Australia's exotic fruit fly risk.

"Globally, accepting these four pests as a single species will lead to improved international cooperation in pest management, more effective quarantine measures, reduced barriers to international trade, the wider application of established post-harvest treatments, improved fundamental research and, most importantly, enhanced food security for some of the world's poorest nations," said Professor Clarke.

###

The paper, 'B. papayae, B. invadens, and B. dorsalis synonymy', has been published in the journal Systematic Entomology: http://onlinelibrary.wiley.com/doi/10.1111/syen.12113/abstract and is a collaboration between 33 research organisations in 20 countries, supported by the Food and Agriculture Organisation of the United Nations and the International Atomic Energy Agency.

More information and interviews: Tony Steeper, PBCRC Communications Manager, 0417 697 470, t.steeper@pbcrc.com.au

Tony Steeper | Eurek Alert!
Further information:
http://pbcrc.com.au

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>