Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


West Runton Elephant helps unlock the past

Researchers from the University of York and Manchester have successfully extracted protein from the bones of a 600,000 year old mammoth, paving the way for the identification of ancient fossils.

Using an ultra-high resolution mass spectrometer, bio-archaeologists were able to produce a near complete collagen sequence for the West Runton Elephant, a Steppe Mammoth skeleton which was discovered in cliffs in Norfolk in 1990. The remarkable 85 per cent complete skeleton – the most complete example of its species ever found in the world - is preserved by Norfolk Museums and Archaeology Service in Norwich.

Bio-archaeologist Professor Matthew Collins, from the University of York’s Department of Archaeology, said: “The time depth is absolutely remarkable. Until several years ago we did not believe we would find any collagen in a skeleton of this age, even if it was as well-preserved as the West Runton Elephant.

“We believe protein lasts in a useful form ten times as long as DNA which is normally only useful in discoveries of up to 100,000 years old in Northern Europe. The implications are that we can use collagen sequencing to look at very old extinct animals. It also means we can look through old sites and identify remains from tiny fragments of bone.”

Dr Mike Buckley, from the Faculty of Life Sciences at the University of Manchester, said: “What is truly fascinating is that this fundamentally important protein, which is one of the most abundant proteins in most (vertebrate) animals, is an ideal target for obtaining long lost genetic information."

The collagen sequencing was carried out at the Centre for Excellence in Mass Spectrometry at the University of York and is arguably the oldest protein ever sequenced; short peptides (chains of amino acids) have controversially been reported from dinosaur fossils.

The research formed part of a study into the sequencing of mammoths and mastodons, which is published in the journal Geochimica et Cosmochimica Acta. The West Runton Elephant was compared with other mammoths, modern elephants and mastodons. Despite the age of the fossil, sufficient peptides were obtained to identify the West Runton skeleton as elephantid, and there was sufficient sequence variation to discriminate elephantid and mammutid collagen.

Nigel Larkin, co-author and Research Associate with Norfolk Museums and Archaeology Service, said: “The West Runton Elephant is unusual in that it is a nearly complete skeleton. At the time this animal was alive, before the Ice Ages, spotted hyenas much larger than those in Africa today were scavenging most carcases and devouring the bones as well as meat. That means most fossils found from this time period are individual bones or fragments of bone, making them difficult to identify. In the future, collagen sequencing might help us to determine the species represented by even smallest scraps of bone.

“Therefore this research has important implications for bones and bone fragments in all archaeological and palaeontological collections in museums and archaeology units around the world, not just those of Norfolk Museums and Archaeology Service in Norwich.”

Notes to editors:
The full article of Mammoth and Mastodon collagen sequences; survival and utility is available at
Collagen is a naturally occurring protein. Sequencing involves looking at the order of the amino acids within the protein with the differences in sequences allowing scientists to identify different species.
Further information and images of the West Runton Elephant are available at or
For more information on the University of York’s Department of Archaeology visit
For more information on the Faculty of Life Sciences at the University of Manchester visit

For more information on the Norfolk Museums and Archaeology Service visit

Caron Lett | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First-time reconstruction of infectious bat influenza viruses
25.10.2016 | Universitätsklinikum Freiburg

nachricht The nanostructured cloak of invisibility
25.10.2016 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>