Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Runton Elephant helps unlock the past

31.03.2011
Researchers from the University of York and Manchester have successfully extracted protein from the bones of a 600,000 year old mammoth, paving the way for the identification of ancient fossils.

Using an ultra-high resolution mass spectrometer, bio-archaeologists were able to produce a near complete collagen sequence for the West Runton Elephant, a Steppe Mammoth skeleton which was discovered in cliffs in Norfolk in 1990. The remarkable 85 per cent complete skeleton – the most complete example of its species ever found in the world - is preserved by Norfolk Museums and Archaeology Service in Norwich.

Bio-archaeologist Professor Matthew Collins, from the University of York’s Department of Archaeology, said: “The time depth is absolutely remarkable. Until several years ago we did not believe we would find any collagen in a skeleton of this age, even if it was as well-preserved as the West Runton Elephant.

“We believe protein lasts in a useful form ten times as long as DNA which is normally only useful in discoveries of up to 100,000 years old in Northern Europe. The implications are that we can use collagen sequencing to look at very old extinct animals. It also means we can look through old sites and identify remains from tiny fragments of bone.”

Dr Mike Buckley, from the Faculty of Life Sciences at the University of Manchester, said: “What is truly fascinating is that this fundamentally important protein, which is one of the most abundant proteins in most (vertebrate) animals, is an ideal target for obtaining long lost genetic information."

The collagen sequencing was carried out at the Centre for Excellence in Mass Spectrometry at the University of York and is arguably the oldest protein ever sequenced; short peptides (chains of amino acids) have controversially been reported from dinosaur fossils.

The research formed part of a study into the sequencing of mammoths and mastodons, which is published in the journal Geochimica et Cosmochimica Acta. The West Runton Elephant was compared with other mammoths, modern elephants and mastodons. Despite the age of the fossil, sufficient peptides were obtained to identify the West Runton skeleton as elephantid, and there was sufficient sequence variation to discriminate elephantid and mammutid collagen.

Nigel Larkin, co-author and Research Associate with Norfolk Museums and Archaeology Service, said: “The West Runton Elephant is unusual in that it is a nearly complete skeleton. At the time this animal was alive, before the Ice Ages, spotted hyenas much larger than those in Africa today were scavenging most carcases and devouring the bones as well as meat. That means most fossils found from this time period are individual bones or fragments of bone, making them difficult to identify. In the future, collagen sequencing might help us to determine the species represented by even smallest scraps of bone.

“Therefore this research has important implications for bones and bone fragments in all archaeological and palaeontological collections in museums and archaeology units around the world, not just those of Norfolk Museums and Archaeology Service in Norwich.”

Notes to editors:
The full article of Mammoth and Mastodon collagen sequences; survival and utility is available at dx.doi.org/10.1016/j.gca.2011.01.022
Collagen is a naturally occurring protein. Sequencing involves looking at the order of the amino acids within the protein with the differences in sequences allowing scientists to identify different species.
Further information and images of the West Runton Elephant are available at www.museums.norfolk.gov.uk/Research/Collections/Geology_Collections/West_Runton_Elephant/index.htm or en.wikipedia.org/wiki/West_Runton_Elephant
For more information on the University of York’s Department of Archaeology visit www.york.ac.uk/archaeology
For more information on the Faculty of Life Sciences at the University of Manchester visit www.ls.manchester.ac.uk

For more information on the Norfolk Museums and Archaeology Service visit www.museums.norfolk.gov.uk

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>