Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Runton Elephant helps unlock the past

31.03.2011
Researchers from the University of York and Manchester have successfully extracted protein from the bones of a 600,000 year old mammoth, paving the way for the identification of ancient fossils.

Using an ultra-high resolution mass spectrometer, bio-archaeologists were able to produce a near complete collagen sequence for the West Runton Elephant, a Steppe Mammoth skeleton which was discovered in cliffs in Norfolk in 1990. The remarkable 85 per cent complete skeleton – the most complete example of its species ever found in the world - is preserved by Norfolk Museums and Archaeology Service in Norwich.

Bio-archaeologist Professor Matthew Collins, from the University of York’s Department of Archaeology, said: “The time depth is absolutely remarkable. Until several years ago we did not believe we would find any collagen in a skeleton of this age, even if it was as well-preserved as the West Runton Elephant.

“We believe protein lasts in a useful form ten times as long as DNA which is normally only useful in discoveries of up to 100,000 years old in Northern Europe. The implications are that we can use collagen sequencing to look at very old extinct animals. It also means we can look through old sites and identify remains from tiny fragments of bone.”

Dr Mike Buckley, from the Faculty of Life Sciences at the University of Manchester, said: “What is truly fascinating is that this fundamentally important protein, which is one of the most abundant proteins in most (vertebrate) animals, is an ideal target for obtaining long lost genetic information."

The collagen sequencing was carried out at the Centre for Excellence in Mass Spectrometry at the University of York and is arguably the oldest protein ever sequenced; short peptides (chains of amino acids) have controversially been reported from dinosaur fossils.

The research formed part of a study into the sequencing of mammoths and mastodons, which is published in the journal Geochimica et Cosmochimica Acta. The West Runton Elephant was compared with other mammoths, modern elephants and mastodons. Despite the age of the fossil, sufficient peptides were obtained to identify the West Runton skeleton as elephantid, and there was sufficient sequence variation to discriminate elephantid and mammutid collagen.

Nigel Larkin, co-author and Research Associate with Norfolk Museums and Archaeology Service, said: “The West Runton Elephant is unusual in that it is a nearly complete skeleton. At the time this animal was alive, before the Ice Ages, spotted hyenas much larger than those in Africa today were scavenging most carcases and devouring the bones as well as meat. That means most fossils found from this time period are individual bones or fragments of bone, making them difficult to identify. In the future, collagen sequencing might help us to determine the species represented by even smallest scraps of bone.

“Therefore this research has important implications for bones and bone fragments in all archaeological and palaeontological collections in museums and archaeology units around the world, not just those of Norfolk Museums and Archaeology Service in Norwich.”

Notes to editors:
The full article of Mammoth and Mastodon collagen sequences; survival and utility is available at dx.doi.org/10.1016/j.gca.2011.01.022
Collagen is a naturally occurring protein. Sequencing involves looking at the order of the amino acids within the protein with the differences in sequences allowing scientists to identify different species.
Further information and images of the West Runton Elephant are available at www.museums.norfolk.gov.uk/Research/Collections/Geology_Collections/West_Runton_Elephant/index.htm or en.wikipedia.org/wiki/West_Runton_Elephant
For more information on the University of York’s Department of Archaeology visit www.york.ac.uk/archaeology
For more information on the Faculty of Life Sciences at the University of Manchester visit www.ls.manchester.ac.uk

For more information on the Norfolk Museums and Archaeology Service visit www.museums.norfolk.gov.uk

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>