Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Nile virus studies show how star-shaped brain cells cope with infection

02.04.2009
Research published in the FASEB Journal explains how nerve cells act like immune cells, causing inflammation in the process

A new study published as the cover article for the April 2009 issue of The FASEB Journal promises to give physicians new ways to reduce deadly responses to viral infections of the brain and spinal cord. In the report, scientists from Columbia University, NY, detail for the first time the chemical processes that star-shaped nerve cells, called astrocytes, use to handle invading viruses and to summon other immune cells to cause life-threatening inflammation.

"Studies such as this take us one step closer to understanding both the risk and benefit associated with antiviral immune response and may lead to new treatment strategies," said W. Ian Lipkin, the senior researcher involved in the study, who also is the director of Columbia's Center for Infection and Immunity, and led the team that first identified the presence of West Nile Virus in New York in 1999.

In this study, Lipkin and colleagues cultured astrocytes from the brains of newborn mice and exposed the cells to a West Nile virus-like molecule (called Poly I:C), either from outside or inside the brain cell membranes. After various laboratory experiments, the researchers identified the cellular machinery (such as a protein called MDA-5) that astrocytes use to "see" viral invaders. They also identified recognition molecules on the astrocytes that initiate and control the central nervous system's immune responses.

"Ironically, the cells we use to monitor and to protect out brain—the astrocytes—are among those we know the least about," said Gerald Weissmann, M.D., editor-in-chief of The FASEB Journal. "We do know, however, that inflammation of the brain caused by the West Nile virus affects these star-shaped cells and makes the disease difficult to treat .We can use this new understanding of astrocytes not only to devise treatments for viral invaders from abroad, but also from deadly viruses closer to home.

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>