Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


West Nile virus studies show how star-shaped brain cells cope with infection

Research published in the FASEB Journal explains how nerve cells act like immune cells, causing inflammation in the process

A new study published as the cover article for the April 2009 issue of The FASEB Journal promises to give physicians new ways to reduce deadly responses to viral infections of the brain and spinal cord. In the report, scientists from Columbia University, NY, detail for the first time the chemical processes that star-shaped nerve cells, called astrocytes, use to handle invading viruses and to summon other immune cells to cause life-threatening inflammation.

"Studies such as this take us one step closer to understanding both the risk and benefit associated with antiviral immune response and may lead to new treatment strategies," said W. Ian Lipkin, the senior researcher involved in the study, who also is the director of Columbia's Center for Infection and Immunity, and led the team that first identified the presence of West Nile Virus in New York in 1999.

In this study, Lipkin and colleagues cultured astrocytes from the brains of newborn mice and exposed the cells to a West Nile virus-like molecule (called Poly I:C), either from outside or inside the brain cell membranes. After various laboratory experiments, the researchers identified the cellular machinery (such as a protein called MDA-5) that astrocytes use to "see" viral invaders. They also identified recognition molecules on the astrocytes that initiate and control the central nervous system's immune responses.

"Ironically, the cells we use to monitor and to protect out brain—the astrocytes—are among those we know the least about," said Gerald Weissmann, M.D., editor-in-chief of The FASEB Journal. "We do know, however, that inflammation of the brain caused by the West Nile virus affects these star-shaped cells and makes the disease difficult to treat .We can use this new understanding of astrocytes not only to devise treatments for viral invaders from abroad, but also from deadly viruses closer to home.

Cody Mooneyhan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>