Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welsh scientists 'clone' human virus

14.09.2010
A team of Welsh scientists have successfully cloned a human virus offering new hope for the treatment of potentially life-threatening diseases.

Human cytomegalovirus (HCMV) is a major infectious cause of congenital malformations worldwide. The virus is also known to cause life-threatening disease in transplant patients and people with HIV/AIDS.

The development of new treatments has been hampered as scientists have been unable to stably replicate HCMV outside the human body.

Dr Richard Stanton from Cardiff University's School of Medicine who led the joint research, said: "HCMV has by far the largest genome of all viruses affecting humans - consequently it was technically difficult to clone in an intact form in the laboratory.

"Cloning a copy of the virus from a strain isolated by Cardiff Public Health Laboratories has enabled us to identify the genes causing the instability of the virus outside the body.

"Following the identification of these genes, we have successfully developed cells in which we can grow virus that corresponds to that which exists in the human body."

Cloning the virus for the first time will help virologists develop antivirals and vaccines against the virus that causes clinical disease.

Following the study, the clone has already been distributed to research laboratories worldwide, and is being tested by the World Health Organisation (WHO) as part of a study to develop an international diagnostic standard with which to compare clinical isolates.

The genome sequence of the Cardiff virus has also been designated the international reference for HCMV in the National Centre for Biotechnology Information (NCBI) - an international database that provides reference standards for biomedical and genomic information.

Dr Stanton added: "HCMV has been designated as a highest priority vaccine target by the US Institute of Medicine. When developing vaccines, anti-viral agents and improving understanding of disease, it is crucial to work with a virus that accurately represents the virus present in patients.

"For the first time our work has enabled us to create an exact copy of the virus outside of the body offering a vital step forward in the development of new treatments."

The study, published in the The Journal of Clinical Investigationand funded by the Wellcome Trust and the Medical Research Council, was a joint collaboration between Cardiff University's Infection, Immunity and Inflammation Interdisciplinary Research Group and Drs Davison and Dargan at the Centre for Virus Research at the University of Glasgow.

The virus, named Merlin, was isolated from a clinical sample identified by the Diagnostic Unit, Public Health Wales.

Notes: Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication – is available in the on-line edition of The Journal of Clinical Investigation: www.jci.org/articles/view/42955

Further information is available by contacting:

Dr Rich Stanton
Cardiff University
School of Medicine
Tel: 029 20 687351
E-mail: StantonRJ@cf.ac.uk
School of Medicine
Cardiff University's School of Medicine is a significant contributor to healthcare in Wales, a major provider of professional staff for the National Health Service and an international centre of excellence for research, delivering substantial health benefits locally and internationally. The school's 800 staff include 500 research and academic staff who teach more than 2,000 students, including 1,110 postgraduate students.

The School is based at the Heath Park Campus, a site it shares with the University Hospital of Wales, the third largest university hospital in the UK. The School has an all-Wales role, contributing greatly to promoting, enhancing and protecting the nation's health.

A key partner in this role is the National Health Service (NHS) in Wales, with which the School is linked at all levels. This mutual dependency is illustrated by the teaching of medical undergraduates in more than 150 hospitals located in all of Wales' health authorities. The medical curriculum followed at the School enables students to acquire and apply knowledge, skills, judgement and attitudes appropriate to delivering a high standard of professional care. Around 300 new doctors currently graduate from the School every year and the Welsh Assembly Government has invested substantially in new teaching facilities to increase this number further

Cardiff University

Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, Professor Sir Martin Evans.

Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise in research and research-led teaching encompasses: the humanities; the natural, physical, health, life and social sciences; engineering and technology; preparation for a wide range of professions; and a longstanding commitment to lifelong learning.

Dr. Rich Stanton | EurekAlert!
Further information:
http://www.cf.ac.uk

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>