Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Regenerate Heart Cells in Mice

17.04.2015

When a heart attack strikes, heart muscle cells die and scar tissue forms, paving the way for heart failure. Cardiovascular diseases are a major cause of death worldwide, in part because the cells in our most vital organ do not get renewed.


Weizmann Institute of Science

Two neonatal cardiomyocytes (stained red) undergoing cell division after treatment with NRG1.

As opposed to blood, hair, or skin cells that can renew themselves throughout life, our heart cells cease to divide shortly after birth, with very little renewal in adulthood. New research at the Weizmann Institute of Science provides insight into the question of why the mammalian heart fails to regenerate, and also demonstrated, in adult mice, the possibility of turning back this fate. This research appeared on April 13 in Nature Cell Biology.

Prof. Eldad Tzahor of the Institute’s Department of Biological Regulation thought that part of the answer to the regeneration puzzle might lie in his area of expertise: embryonic development, especially of the heart. Indeed, it was known that a protein called ERBB2 – which is well studied because it can pass along growth signals promoting certain kinds of cancer – plays a role in heart development.

ERBB2 is a specialized receptor – a protein that transmits external messages into the cell. It generally works together with a second, related receptor by binding a growth factor called neuregulin 1 (NRG1) to transmit its message. NGR1 is already being tested in clinical studies as a treatment for heart failure.

Dr. Gabriele D’Uva, a postdoctoral fellow in Prof. Tzahor’s research group, wanted to know exactly how NRG1 and ERBB2 are involved in heart regeneration. In mice, new heart muscle cells can be added for up to a week after birth; in fact, newborn mice can regenerate damaged hearts, while seven-day-old mice cannot.

Dr. D’Uva and research student Alla Aharonov observed that heart muscle cells called cardiomyocytes that were treated with NRG1 continued to proliferate on the day of birth, but that the effect dropped dramatically within a week, even with ample amounts of NRG1. Further investigation showed that the difference between a day and a week was the amount of ERBB2 on the cardiomyocyte membranes.

The team then created mice in which the gene for ERBB2 was “knocked out” in cardiomyocytes. This had a severe impact: the mice had hearts with walls that were thin and balloon-like – a cardiac pathology known as dilated cardiomyopathy. The conclusion was that cardiomyocytes lacking ERBB2 do not divide, even in the presence of NRG1.

Next, the team reactivated the ERBB2 protein in adult mouse heart cells, in which cardiomyocytes normally no longer divide. This resulted in extreme cardiomyocyte proliferation and hypertrophy – excessive growth and development of the individual cardiomyocytes – leading to a giant heart (cardiomegaly) that left little room for blood to enter. Says Prof. Tzahor: “Too little or too much of this protein had a devastating impact on heart function.”

The question then became: if one could activate ERBB2 for just a short period in an adult heart following a heart attack, might it be possible to get the positive results, i.e., cardiac cell renewal, without negative ones such as hypertrophy and scarring?

Testing this idea, the team found that they could, indeed, activate ERBB2 in mice for a short interval only following an induced heart attack, and obtain nearly complete heart regeneration within several weeks. “The results were amazing,” says Prof. Tzahor. “As opposed to extensive scarring in the control hearts, the ERBB2-expressing hearts had completely returned to their previous state.”

Investigation of the regenerative process through live imaging and molecular studies revealed how this happens: the cardiomyocytes “de-differentiate” – that is, they revert to an earlier form, something between an embryonic and an adult cell, which can then divide and differentiate into new heart cells. In other words, the ERBB2 took the cells back a step to an earlier, embryonic form; and then stopping its activity promoted the regeneration process.

In continuing research, Prof. Tzahor and his team began to outline the pathway – the other proteins that respond to the NRG1 message inside the cell. “ERBB2 is clearly at the top of the chain. We have shown that it can induce cardiac regeneration on its own. But understanding the roles of the other proteins in the chain may present us with new drug targets for treating heart disease,” says Dr. D’Uva.

Prof. Tzahor points out that clinical trials of patients receiving the NRG1 treatment might not be overly successful if ERBB2 levels are not boosted as well. He and his team plan to continue researching this signaling pathway to suggest ways of improving the process, which may, in the future, point to ways of renewing heart cells.

Because this pathway is also involved in cancer, well-grounded studies will be needed to understand exactly how to direct the cardiomyocyte renewal signal at the right place, the right time, and in the right amount. “Much more research will be required to see if this principle could be applied to the human heart, but our findings are proof that it may be possible,” he says.

Participating in this research were Profs. Yosef Yarden and Michal Neeman, also of the Department of Biological Regulation. In addition, Prof. Jonathan Leor of Chaim Sheba Medical Center, Israel, and Prof. Richard P. Harvey of the University of South Wales, Australia, contributed to this research.

Prof. Eldad Tzahor’s research is supported by the Louis and Fannie Tolz Collaborative Research Project; the European Research Council; and the estate of Jack Gitlitz.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. The Institute’s 3,800-strong scientific community engages in research addressing crucial problems in medicine and health, energy, technology, agriculture, and the environment. Outstanding young scientists from around the world pursue advanced degrees at the Weizmann Institute’s Feinberg Graduate School. The discoveries and theories of Weizmann Institute scientists have had a major impact on the wider scientific community, as well as on the quality of life of millions of people worldwide.

Contact Information
Jennifer Manning
Director, Science Content
jennifer@acwis.org
Phone: 212-895-7952

Jennifer Manning | newswise

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>