Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weight is a prickly problem: a key role for hedgehog signalling in controlling fat storage

08.01.2010
Researchers at IMBA, the Institute of Molecular Biotechnology in Vienna, have been able to identify a regulator of fat metabolism which influences the formation of white but not brown fat cells.

Obesity is a widespread condition in humans and has many serious consequences. Not only are overweight people faced with surcharges on airplanes but they also have a much higher risk of contracting a number of potentially fatal diseases.

A considerable amount of research effort is currently focussed on the problem of weight control but to date genetic screens for factors that cause obesity have been hampered by the lack of an appropriate system. Putting it bluntly, yeast do not become overweight.

However, fortunately (for us) flies do and this has provided scientists in Josef Penninger's group at the IMBA in Vienna with a unique handle on the process. Their initial and highly surprising results are reported in the present issue of Cell.

Andrew Pospisilik and Daniel Schramek in Penninger's group have designed a method that allows them rapidly to screen a large percentage of the genome of the fruit fly Drosophila melanogaster for genes that when mutated give rise to disorders in fat metabolism. The screen was based on the extensive fly library at the IMP/IMBA's VDRC (Vienna Drosophila RNAi Centre). Importantly, this permitted them to examine the effects of genes that had previously not been amenable to such studies because mutations in them are lethal at a very early developmental stage. Furthermore, the screen worked in vivo rather than in cultured cells, so there was no need to verify that the results are physiologically relevant.

Application of the screen resulted in a total of about five hundred genes that seemed somehow to be involved in fat metabolism. Many of these had been previously implicated in the process, which confirmed that the method yielded plausible results. Some of the genes identified were found to be active in neurons, suggesting strongly that fat storage in flies can be regulated by neuronal genes: it is clearly the case in mammals that feeding behaviour is under the control of neuronal genes. And some of the candidate regulatory genes worked in muscles: this too is similar to the situation in mammals.

As expected, the majority of hits from the screen related to genes showed to be active in fat tissue. A good number of them were previously unknown and the screen was thus highly successful in pointing out further areas for study. But perhaps the most significant result of the work was the finding that genes associated with the so-called "hedgehog" signalling pathway are involved in the regulation of fat storage. Hedgehog is one of the "pattern" genes in the fly, responsible for ensuring that developing cells assume the correct identity.

The idea that hedgehog also plays a part in controlling fat levels in flies was extremely interesting as it was consistent with previous findings that inhibition of hedgehog signalling protects mice from gaining weight (see Buhman et al. 2004, J. Nutr. 134, 2979-2984). Mammals store fat in so-called adipocytes, or fat cells. Together with Harald Esterbauer at the Medical University of Vienna, and with the expert assistance of Chi-chung Hui at the University of Toronto, Pospisilik was able to show in cultured cells that hedgehog signalling blocked differentiation of pre-adipocytes to white adipocytes. To examine directly the effects of inhibiting hedgehog signalling in fat tissues, Pospisilik and Esterbauer generated mice in which the Sufu gene was inactivated solely in these tissues. (Sufu is a known inhibitor of hedgehog signalling.) The mice were healthy but noticeably thin and Pospisilik found that this was because they had essentially no white adipose tissue, although their brown adipose tissues levels were unaffected. And in in vitro experiments on pre-adipocytes, hedgehog activation was shown to inhibit expression of a number of pro-adipogenic genes while stimulating expression of anti-adipogenic genes.

Taken together, these results confirm a role in mice - and thus presumably in man - for hedgehog signalling in the production of white but not brown adipocytes. Mammals use white adipose tissue as the major storage site for triglycerides, while brown adipose tissue is important in the regulation of body temperature (it metabolizes lipids to generate heat). Inhibiting the storage of fat in white adipose tissue ("bad" fat) could represent a way to control weight gain in humans but any such treatment could be counterproductive if it also affected brown adipose tissue. As Pospisilik says, "Anything that interferes with white fat has generally turned out to have similar effects on brown fat. Hedgehog is one of the first molecules shown to affect white and brown fat differently."

The finding that the hedgehog signalling pathway inhibits the formation of white adipose tissue while leaving brown adipose tissue intact is of enormous potential therapeutic importance. Pospisilik points out that "most overweight people suffer from cold because they have less brown fat and the little they do have is not active." Disrupting the hedgehog signalling pathway in a tissue-specific way (Pospisilik and Esterbauer showed that doing so did not alter glucose tolerance or insulin sensitivity) could channel more fat into brown adipose tissue, thereby helping overweight people both stay warm and lose weight. Perhaps the days of airplace surcharges may finally be numbered?

The paper ""Drosophila genome-wide obesity screen reveals Hedgehog as a determinant of brown versus white adipose cell fate" by Pospisilik et al. will be published in Cell on January 7, 2010. It will be featured in Cell's new online format as "article of the future".

About IMBA
The IMBA - Institute for Molecular Biotechnology of the Austrian Academy of Sciences - opened in 2003. It combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. The ultimate goal is to implement acquired knowledge into the development of innovative applications for prevention, diagnosis and treatment of disease.
About IMP - IMBA Research Center
A cooperation contract links the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) to the Research Institute of Molecular Pathology (IMP), which has operated since 1988 and is supported by Boehringer Ingelheim. Under the name of the "IMP - IMBA Research Center", both institutes have access to a combined infrastructure in scientific and administrative areas. Together, the two institutes employ around 400 staff from 30 nations and are members of the Campus Vienna Biocenter.
Contact
Dr. Heidemarie Hurtl
IMP-IMBA Communications
Phone: +43 1 79730 3625
Mobile phone: +43 664 8247910
heidemarie.hurtl@imba.oeaw.ac.at
Scientific Contact:
Andrew Pospisilik, PhD
IMBA - Institute of Molecular Biotechnology
Mobile phone: +43 699 11547544
andrew.pospisilik@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imba.oeaw.ac.at

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>