Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weight is a prickly problem: a key role for hedgehog signalling in controlling fat storage

08.01.2010
Researchers at IMBA, the Institute of Molecular Biotechnology in Vienna, have been able to identify a regulator of fat metabolism which influences the formation of white but not brown fat cells.

Obesity is a widespread condition in humans and has many serious consequences. Not only are overweight people faced with surcharges on airplanes but they also have a much higher risk of contracting a number of potentially fatal diseases.

A considerable amount of research effort is currently focussed on the problem of weight control but to date genetic screens for factors that cause obesity have been hampered by the lack of an appropriate system. Putting it bluntly, yeast do not become overweight.

However, fortunately (for us) flies do and this has provided scientists in Josef Penninger's group at the IMBA in Vienna with a unique handle on the process. Their initial and highly surprising results are reported in the present issue of Cell.

Andrew Pospisilik and Daniel Schramek in Penninger's group have designed a method that allows them rapidly to screen a large percentage of the genome of the fruit fly Drosophila melanogaster for genes that when mutated give rise to disorders in fat metabolism. The screen was based on the extensive fly library at the IMP/IMBA's VDRC (Vienna Drosophila RNAi Centre). Importantly, this permitted them to examine the effects of genes that had previously not been amenable to such studies because mutations in them are lethal at a very early developmental stage. Furthermore, the screen worked in vivo rather than in cultured cells, so there was no need to verify that the results are physiologically relevant.

Application of the screen resulted in a total of about five hundred genes that seemed somehow to be involved in fat metabolism. Many of these had been previously implicated in the process, which confirmed that the method yielded plausible results. Some of the genes identified were found to be active in neurons, suggesting strongly that fat storage in flies can be regulated by neuronal genes: it is clearly the case in mammals that feeding behaviour is under the control of neuronal genes. And some of the candidate regulatory genes worked in muscles: this too is similar to the situation in mammals.

As expected, the majority of hits from the screen related to genes showed to be active in fat tissue. A good number of them were previously unknown and the screen was thus highly successful in pointing out further areas for study. But perhaps the most significant result of the work was the finding that genes associated with the so-called "hedgehog" signalling pathway are involved in the regulation of fat storage. Hedgehog is one of the "pattern" genes in the fly, responsible for ensuring that developing cells assume the correct identity.

The idea that hedgehog also plays a part in controlling fat levels in flies was extremely interesting as it was consistent with previous findings that inhibition of hedgehog signalling protects mice from gaining weight (see Buhman et al. 2004, J. Nutr. 134, 2979-2984). Mammals store fat in so-called adipocytes, or fat cells. Together with Harald Esterbauer at the Medical University of Vienna, and with the expert assistance of Chi-chung Hui at the University of Toronto, Pospisilik was able to show in cultured cells that hedgehog signalling blocked differentiation of pre-adipocytes to white adipocytes. To examine directly the effects of inhibiting hedgehog signalling in fat tissues, Pospisilik and Esterbauer generated mice in which the Sufu gene was inactivated solely in these tissues. (Sufu is a known inhibitor of hedgehog signalling.) The mice were healthy but noticeably thin and Pospisilik found that this was because they had essentially no white adipose tissue, although their brown adipose tissues levels were unaffected. And in in vitro experiments on pre-adipocytes, hedgehog activation was shown to inhibit expression of a number of pro-adipogenic genes while stimulating expression of anti-adipogenic genes.

Taken together, these results confirm a role in mice - and thus presumably in man - for hedgehog signalling in the production of white but not brown adipocytes. Mammals use white adipose tissue as the major storage site for triglycerides, while brown adipose tissue is important in the regulation of body temperature (it metabolizes lipids to generate heat). Inhibiting the storage of fat in white adipose tissue ("bad" fat) could represent a way to control weight gain in humans but any such treatment could be counterproductive if it also affected brown adipose tissue. As Pospisilik says, "Anything that interferes with white fat has generally turned out to have similar effects on brown fat. Hedgehog is one of the first molecules shown to affect white and brown fat differently."

The finding that the hedgehog signalling pathway inhibits the formation of white adipose tissue while leaving brown adipose tissue intact is of enormous potential therapeutic importance. Pospisilik points out that "most overweight people suffer from cold because they have less brown fat and the little they do have is not active." Disrupting the hedgehog signalling pathway in a tissue-specific way (Pospisilik and Esterbauer showed that doing so did not alter glucose tolerance or insulin sensitivity) could channel more fat into brown adipose tissue, thereby helping overweight people both stay warm and lose weight. Perhaps the days of airplace surcharges may finally be numbered?

The paper ""Drosophila genome-wide obesity screen reveals Hedgehog as a determinant of brown versus white adipose cell fate" by Pospisilik et al. will be published in Cell on January 7, 2010. It will be featured in Cell's new online format as "article of the future".

About IMBA
The IMBA - Institute for Molecular Biotechnology of the Austrian Academy of Sciences - opened in 2003. It combines fundamental and applied research in the field of biomedicine. Interdisciplinary research groups address functional genetic questions, particularly those related to the origin of disease. The ultimate goal is to implement acquired knowledge into the development of innovative applications for prevention, diagnosis and treatment of disease.
About IMP - IMBA Research Center
A cooperation contract links the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) to the Research Institute of Molecular Pathology (IMP), which has operated since 1988 and is supported by Boehringer Ingelheim. Under the name of the "IMP - IMBA Research Center", both institutes have access to a combined infrastructure in scientific and administrative areas. Together, the two institutes employ around 400 staff from 30 nations and are members of the Campus Vienna Biocenter.
Contact
Dr. Heidemarie Hurtl
IMP-IMBA Communications
Phone: +43 1 79730 3625
Mobile phone: +43 664 8247910
heidemarie.hurtl@imba.oeaw.ac.at
Scientific Contact:
Andrew Pospisilik, PhD
IMBA - Institute of Molecular Biotechnology
Mobile phone: +43 699 11547544
andrew.pospisilik@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imba.oeaw.ac.at

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>