Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weed Control without Chemicals

15.03.2012
Weed zapping with lasers! A research project in Hannover uses laser technology to kill weeds in an early growth stage. This environmental-friendy method offers news possibilities for weed control for agriculture and garden centers.

The laser beam can be used to selectively fight weeds in an early growth stage. This is the result of a current research project between the Laser Zentrum Hannover (LZH) and the Biosystems and Horticultural Engineering (BGT) faculty of the Leibniz Universität Hannover.


Exact positioning of the laser beam (shown here in red) on weed model plants in a laboratory setting

More and more, environmentally safe methods are being used to rid fields used for agricultural and horticultural of unwanted plants, or weeds. Chemical pesticides can be used selectively and are suitable for use where conventional, thermal methods such as flaming are either not exact enough, or are too energy consuming. However, drift and overdosing often lead to harmful herbicide residues in the top soil layers, or in surface water. By using an exact, selective laser beam, the growth of weeds can be impaired by destroying the sensitive growth centers of the plants, their so-called meristems. Current laboratory results show that a minimum dose of around 35 Joules is necessary to kill seedlings, and this laser energy can be exactly and effectively adapted to the plant species and growth stage.

Researchers from the LZH Department of Materials and Processes, Safety Technology Group are using a CO2 laser in the infrared range with a wavelength of 10.6 µm in their current investigations. The laser radiation has a direct thermal effect on the plants. By using a galvanometer scanner with a flexible mirror system, the laser beam can be moved quickly from plant to plant, and can be focused with high precision on the near-surface meristems. Under laboratory conditions, an accuracy of

A stereo camera system is used to recognize the plants and optimize the position of the laser beam. After using a complex processing method, scientists of the BGT have compared camera images based on threshold level filtering and edge detection, with Active Shape Models of the plants. The position of the leaves can be used to determine exactly where the meristem position is, and once these coordinates are found, a signal is sent to the laser to “hit the target”.

Scientists at the LZH have been able to determine exactly how much energy is needed to achieve an optimal effect on the target, making this method especially efficient. At the moment, different irradiation times in different weed concentrations are being tested concerning economic viability. Current knowledge shows that the best results for large areas can be provided by using autonomous field robots working in a stop-and-go mode.

The project „Investigations on the Effect of the Laser Beam on young Plants for Weed Control using Image Processing“ is subsidized by the German Research Foundation (DFG).

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>