Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weapon-wielding marine microbes may protect populations from foes

07.09.2012
In some populations, natural antibiotics are produced by a few individuals whose closest relatives carry genes conferring resistance.

Competition is a strong driving force of evolution for organisms of all sizes: Those individuals best equipped to obtain resources adapt and reproduce, while others may fall by the wayside. Many organisms — mammals, birds and insects, for instance — also form cooperative social structures that allow resources to be defended and shared within a population.

But surprisingly, even microbes, which are thought to thrive only when able to win the battle for resources against those nearest to them, have a somewhat sophisticated social structure that relies on cooperation, according to MIT scientists. These researchers have recently found evidence that some ocean microbes wield chemical weapons that are harmless to close relatives within their own population, but deadly to outsiders.

The weapons are natural antibiotics produced by a few individuals whose closest relatives carry genes that make them resistant. The researchers believe that the few antibiotic producers are acting as protectors of the many, using the antibiotics to defend the population from competitors or to attack neighboring populations.

“We can’t know what the environmental interactions really are, because microbes are too small for us to observe them in action,” says Professor Martin Polz of MIT’s Department of Civil and Environmental Engineering (CEE), lead investigator on a study appearing in this week’s issue of the journal Science. “But we think the antibiotics play a role in fending off competitors. Of course, those competitors could also produce antibiotics. It’s a potential arms race out there.”

A population of ocean microbes is defined by genetic likeness and shared ecological activities, such as their preferred microhabitat — say, free-floating or attached to algae — or their ability to harvest a particular substance. Because close relatives within populations have very similar if not identical resource requirements, they must by necessity also be strong competitors with one another.

This makes cooperation involving antibiotics doubly surprising, because the ability to produce antibiotics is a classic example of a “selfish” gene that ought to increase the fitness — or reproductive rate — of the individual carrying the gene. In a strictly competitive environment, the microbe would use this advantage against its closest relatives. But now it looks as if this competition is modulated by social interactions where antibiotics produced by a few individuals act as “public goods”: items that benefit the group, rather than just the individual.

This differentiation of populations into individuals that produce antibiotics and those that are resistant is one of the first demonstrations that microbial populations engage in a division of labor by social role. This observation also provides an explanation for why so many genes are patchily distributed across genomes of closely related microbes. At least some of these genes may be responsible for creating tightly knit social units of bacteria in the wild.

“It’s easy to imagine bacteria in the environment as selfish creatures capable only of reproducing as fast as conditions allow, without any social organization,” says Otto Cordero, a CEE postdoc who is a first author on the Science paper. “But that is the mind-blowing part: Bacterial wars are organized along the lines of populations, which are groups of closely related individuals with similar ecological activities.”

The study also uncovers an untapped source of antibiotics that could have the potential to aid in the fight against human bacterial pathogens, which are rapidly developing resistance to the few antibiotics in use — nearly all of which are produced by soil-living bacteria.

“This paper [shows] that bacteria work together in complex relationships that have largely been underappreciated by the research community as a whole,” says Gerry Wright, a professor of biochemistry and biomedical sciences and director of the Michael G. DeGroote Institute for Infectious Disease Research at McMaster University. He adds, “The impact on our understanding of resistance is critical. … This work is really important in showing that we can, in fact, study these big questions in populations of natural bacteria, and we can learn something important about how we use antibiotics and avoid resistance in the clinic.”

To obtain these findings, the researchers tested about 35,000 interactions among pairs of 185 strains of Vibrionaceae bacteria populations taken from the ocean. They found that 44 percent of the strains were able to inhibit the growth of at least one other strain and 86 percent were inhibited by at least one other strain. They then used genomic analysis to determine genetic kinship.

Co-authors include Sarah Proehl, Lynn Ngo and Fatima Hussain, MIT alumnae who performed much of the testing during their undergraduate years through the MIT Undergraduate Research Opportunities Program. Other co-authors are former MIT postdocs Hans Wildschutte and Benjamin Kirkup, Frederique Le Roux of the IFREMER Laboratory of Genetics and Pathology in France, and Tracy Mincer of Woods Hole Oceanographic Institution.

Funding was provided by the Moore Foundation, the Broad Institute, the National Science Foundation and the Netherlands Organization for Scientific Research.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>