Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New weapon against highly resistant microbes within grasp

28.05.2010
Researchers shed light on the mode of action; promising approach for new antibiotics

An active compound from fungi and lower animals may well be suitable as an effective weapon against dangerous bacteria. We're talking about plectasin, a small protein molecule that can even destroy highly resistant bacteria.

Researchers at the Universities of Bonn, Utrecht, Aalborg and of the Danish company Novozymes AS have shed light on how the substance does this. The authors see plectasin as a promising lead compound for new antibiotics.

These results will be published in Science journal on 28th May.

More and more bacteria are becoming resistant to normal antibiotics. This is especially true for the methicillin-resistant Staphylococcus aureus (MRSA). Most of the pharmaceutical weapons are now useless against these MRSA strains . According to estimates, as many as every second patient in the USA treated by intensive-care medicine comes down with an MRSA infection.

Plectasin could shift the balance of power back in the doctors' favour. But how exactly does the little protein molecule do that? The Bonn researchers in Dr. Tanja Schneider and Professor Hans-Georg Sahl's team have answered these questions together with Danish and Dutch colleagues. Thus plectasin disrupts the forming of the cell wall in bacteria so that the pathogens can no longer divide.

Theft at the bacteria's construction site

In this process, plectasin behaves like a thief which steals the stones off a mason. 'It binds to a cell-wall building block called lipid II and thus prevents it from being incorporated ,' Professor Sahl explains. 'However, bacteria cannot live without a cell wall.' It comes as no surprise that the most famous antibiotic penicillin also inhibits cell-wall synthesis.

Yet plectasin is more similar in its mode of action to another widely used drug, vancomycin. Vancomycin had been the drug of choice in combating MRSA strains since the 1980s. Meanwhile, though, there are more and more bacteria that are also resistant to vancomycin. 'However, these strains are still susceptible to plectasin,' Dr. Tanja Schneider emphasises. Nevertheless, there is no permanent solution to the resistance problem even with a new antibiotic . 'It is always just a question of time until the pathogens mutate and become insensitive ,' she says. 'It's a never ending arms race.'

Plectasin belongs to the class of defensins. These defence molecules are widespread among fungi, animals and also plants. Humans, for example, produce defensins on their skin and in this way nip infections in the bud. 'Defensins not only kill pathogens but also alert the immune system', Dr. Hans-Henrik Kristensen from the Danish company Novozymes AS explains. 'So the pharmaceutical industry is setting its hopes on them.'

Contact:
Professor Hans-Georg Sahl
Institute of Microbiology and Biotechnology, University of Bonn
Telephone: +49 (0)228 73-7941
Email: hgsahl@uni-bonn.de
Dr. Tanja Schneider
Telephone: +49 (0)228 73-5688 or -5266
Email: tanja@microbiology-bonn.de
Rene Tronborg
Communications Consultant
Novozymes AS
Telephone: +45 4446 2274
E-Mail: retr@novozymes.com

Dr. Hans-Georg Sahl | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>