Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New weapon against highly resistant microbes within grasp

28.05.2010
Researchers shed light on the mode of action; promising approach for new antibiotics

An active compound from fungi and lower animals may well be suitable as an effective weapon against dangerous bacteria. We're talking about plectasin, a small protein molecule that can even destroy highly resistant bacteria.

Researchers at the Universities of Bonn, Utrecht, Aalborg and of the Danish company Novozymes AS have shed light on how the substance does this. The authors see plectasin as a promising lead compound for new antibiotics.

These results will be published in Science journal on 28th May.

More and more bacteria are becoming resistant to normal antibiotics. This is especially true for the methicillin-resistant Staphylococcus aureus (MRSA). Most of the pharmaceutical weapons are now useless against these MRSA strains . According to estimates, as many as every second patient in the USA treated by intensive-care medicine comes down with an MRSA infection.

Plectasin could shift the balance of power back in the doctors' favour. But how exactly does the little protein molecule do that? The Bonn researchers in Dr. Tanja Schneider and Professor Hans-Georg Sahl's team have answered these questions together with Danish and Dutch colleagues. Thus plectasin disrupts the forming of the cell wall in bacteria so that the pathogens can no longer divide.

Theft at the bacteria's construction site

In this process, plectasin behaves like a thief which steals the stones off a mason. 'It binds to a cell-wall building block called lipid II and thus prevents it from being incorporated ,' Professor Sahl explains. 'However, bacteria cannot live without a cell wall.' It comes as no surprise that the most famous antibiotic penicillin also inhibits cell-wall synthesis.

Yet plectasin is more similar in its mode of action to another widely used drug, vancomycin. Vancomycin had been the drug of choice in combating MRSA strains since the 1980s. Meanwhile, though, there are more and more bacteria that are also resistant to vancomycin. 'However, these strains are still susceptible to plectasin,' Dr. Tanja Schneider emphasises. Nevertheless, there is no permanent solution to the resistance problem even with a new antibiotic . 'It is always just a question of time until the pathogens mutate and become insensitive ,' she says. 'It's a never ending arms race.'

Plectasin belongs to the class of defensins. These defence molecules are widespread among fungi, animals and also plants. Humans, for example, produce defensins on their skin and in this way nip infections in the bud. 'Defensins not only kill pathogens but also alert the immune system', Dr. Hans-Henrik Kristensen from the Danish company Novozymes AS explains. 'So the pharmaceutical industry is setting its hopes on them.'

Contact:
Professor Hans-Georg Sahl
Institute of Microbiology and Biotechnology, University of Bonn
Telephone: +49 (0)228 73-7941
Email: hgsahl@uni-bonn.de
Dr. Tanja Schneider
Telephone: +49 (0)228 73-5688 or -5266
Email: tanja@microbiology-bonn.de
Rene Tronborg
Communications Consultant
Novozymes AS
Telephone: +45 4446 2274
E-Mail: retr@novozymes.com

Dr. Hans-Georg Sahl | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>