Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weakness of leukaemic stem cells discovered

05.08.2014

Only one out of every two adult patients survive acute myeloid leukaemia (AML). It is assumed that leukaemic stem cells, which cannot be completely eliminated during treatment, are the origin of relapse. Now a team of Frankfurt-based researchers has discovered, that these cells do have a weakness: 5-LO inhibitors eliminate cells in culture and mouse models.

Despite improved therapy, only one out of every two adult patients survive acute myeloid leukaemia (AML). The mean survival time for this disease, which predominantly occurs in the elderly, is less than a year for patients over 65 years.

It is assumed that leukaemic stem cells, which cannot be completely eliminated during treatment, are the origin of relapse. However, as has been discovered by a team of Frankfurt-based researchers, these cells do have a weakness: In the current edition of the high impact journal "Cancer Research", they report that the enzyme 5-lipoxygenase (5-LO) plays a significant role in the survival of leukaemic AML stem cells.

5-LO is known for its role in inflammatory diseases like asthma. A team led by Dr. Marin Ruthardt from the Haematology Department of the Medical Clinic II and Dr. Jessica Roos, Prof. Diester Steinhilber and Prof. Thorsten Jürgen Maier from the Institute for Pharmaceutical Chemistry showed that the leukaemic stem cells in a subgroup of AML could be selectively and efficiently attacked by 5-LO inhibitors. This was demonstrable in cell culture models as well as in leukaemia mouse models.

"These results provide the basis for the potential implementation of 5-LO-inhibitors as stem cell therapeutic agents for a sustained AML cure, although this must be investigated further in preclinical and clinical studies in humans," explains Dr. Ruthardt. "In addition, there are plans for further molecular biological studies with the objective of understanding exactly how the 5-LO inhibitors act on the leukaemic cells", Prof. Maier continued.

Publication:
Roos et al.: 5-lipoxygenase is a candidate target for therapeutic management of stem cell-like cells in acute myeloid leukemia, in Cancer Research Volume (2014), Published OnlineFirst July 31, 2014;
doi:10.1158/0008-5472.CAN-13-3012

Information PD Dr. Martin Ruthardt, Haematology/Medical Clinic II, Tel. +49/ 69/6301–5338, email: ruthardt@em.uni-frankfurt.de or Prof. Dr. Thorsten Jürgen Maier, Institute for Pharmaceutical Chemistry, Riedberg Campus, Tel.: +49/69/7982-934, email: maier@pharmchem.uni-frankfurt.de.

The Goethe University is an institution with particularly strong research capabilities based in the European financial metropolis of Frankfurt. It celebrates its 100th year of existence in 2014. The university was founded in 1914 through private means from liberally-orientated citizens of Frankfurt and has devoted itself to fulfilling its motto "Science for the Society" in its research and teaching activity right up to the present day.

Many of the founding donors were of Jewish origin. During the last 100 years, the pioneering services offered by the Goethe University have impacted the fields of social, societal and economic sciences, chemistry, quantum physics, neurological research and labour law. On January 1st, 2008, it achieved an exceptional degree of independence as it returned to its historical roots as a privately funded university. Today it is one of the ten universities that are most successful in obtaining external research funding and one of the three largest universities in Germany with centres of excellence in medicine, life sciences and humanities.

Publisher: The president of the Goethe University Frankfurt am Main. Editorial department: Dr. Anne Hardy, Public Relations Officer for Scientific Communication. Abteilung Marketing und Kommunikation, Grüneburgplatz 1, 60629 Frankfurt am Main, Phone: (069) 798-12498.

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

Further reports about: AML Cancer Medical Pharmaceutical activity leukaemia models myeloid universities weakness

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>