Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wbp2 is a novel deafness gene

09.02.2016

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional co-activator for estrogen receptor Esr1 and progesterone receptor Pgr.


Scanning electron microscopy images of outer (OHC) and inner (IHC) hair cells of the ear of a Wbp2-deficient mouse.

EMBO (CC BY 4.0). Adapted from http://embomolmed.embopress.org/cgi/doi/10.15252/emmm.201505523

The loss of Wbp2 causes not only progressive high frequency hearing loss, but also results in reduced expression of Esr1, Esr2 and Pgr in the cochlea – a part of the inner ear. Understanding the estrogen-sensitive molecular networks specific to hearing offers an unprecedented putative new target for the control of the estrogen signalling pathway in the auditory system that could prevent or reverse progressive hearing loss.

“Our study demonstrates that hearing thresholds are normal in young Wbp2 mutant mice, but are raised at high frequencies by four weeks of age,” says EMBO Member Karen Steel of King’s College London, the senior author of the study. “More importantly, we also demonstrate that Wbp2 is crucial for hearing in humans. We found two children affected by severe to profound deafness, each carrying two variants of the WBP2 gene.”

Progressive hearing loss is a very common disease. However, very little is known about its molecular mechanisms. As a result, targets for medical therapies have been lacking. It has been known that estrogen signalling protects against noise-induced hearing loss. However, estrogen-based therapies have not been generally considered for hearing impairment due to their widespread effects. This study opens up the Wbp2 pathway as a new route to therapeutic approaches that more specifically target the inner ear.

Wbp2 was found to be involved in progressive hearing loss during a large-scale screen for hearing defects in newly-generated targeted mouse mutants. The finding of a new gene involved in human deafness following the initial discovery of its role in the mouse also emphasizes the value of mouse genetics research for better understanding human disease.

Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing.

Annalisa Buniello, Neil J Ingham, Morag A Lewis, Andreea C Huma, Raquel Martinez-Vega, Isabel Varela-Nieto, Gema Vizcay-Barrena, Roland A Fleck, Oliver Houston, Tanaya Bardhan, Stuart L Johnson, Jacqueline K White, Huijun Yuan, Walter Marcotti, Karen P Steel

Read the paper: http://embomolmed.embopress.org/cgi/doi/10.15252/emmm.201505523

doi: 10.15252/emmm.201505523

Further information on EMBO Molecular Medicine is available at www.embomolmed.embopress.org

Media Contacts
Yvonne Kaul
Communications Officer
yvonne.kaul@embo.org

Céline Carret
Editor, EMBO Molecular Medicine
Tel: +49 6221 8891 411
celine.carret@embo.org

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. 
For more information: www.embo.org

Weitere Informationen:

http://www.embo.org/news/research-news/research-news-2016/wbp2-is-a-novel-gene-i...

Yvonne Kaul | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>