Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wbp2 is a novel deafness gene

09.02.2016

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional co-activator for estrogen receptor Esr1 and progesterone receptor Pgr.


Scanning electron microscopy images of outer (OHC) and inner (IHC) hair cells of the ear of a Wbp2-deficient mouse.

EMBO (CC BY 4.0). Adapted from http://embomolmed.embopress.org/cgi/doi/10.15252/emmm.201505523

The loss of Wbp2 causes not only progressive high frequency hearing loss, but also results in reduced expression of Esr1, Esr2 and Pgr in the cochlea – a part of the inner ear. Understanding the estrogen-sensitive molecular networks specific to hearing offers an unprecedented putative new target for the control of the estrogen signalling pathway in the auditory system that could prevent or reverse progressive hearing loss.

“Our study demonstrates that hearing thresholds are normal in young Wbp2 mutant mice, but are raised at high frequencies by four weeks of age,” says EMBO Member Karen Steel of King’s College London, the senior author of the study. “More importantly, we also demonstrate that Wbp2 is crucial for hearing in humans. We found two children affected by severe to profound deafness, each carrying two variants of the WBP2 gene.”

Progressive hearing loss is a very common disease. However, very little is known about its molecular mechanisms. As a result, targets for medical therapies have been lacking. It has been known that estrogen signalling protects against noise-induced hearing loss. However, estrogen-based therapies have not been generally considered for hearing impairment due to their widespread effects. This study opens up the Wbp2 pathway as a new route to therapeutic approaches that more specifically target the inner ear.

Wbp2 was found to be involved in progressive hearing loss during a large-scale screen for hearing defects in newly-generated targeted mouse mutants. The finding of a new gene involved in human deafness following the initial discovery of its role in the mouse also emphasizes the value of mouse genetics research for better understanding human disease.

Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing.

Annalisa Buniello, Neil J Ingham, Morag A Lewis, Andreea C Huma, Raquel Martinez-Vega, Isabel Varela-Nieto, Gema Vizcay-Barrena, Roland A Fleck, Oliver Houston, Tanaya Bardhan, Stuart L Johnson, Jacqueline K White, Huijun Yuan, Walter Marcotti, Karen P Steel

Read the paper: http://embomolmed.embopress.org/cgi/doi/10.15252/emmm.201505523

doi: 10.15252/emmm.201505523

Further information on EMBO Molecular Medicine is available at www.embomolmed.embopress.org

Media Contacts
Yvonne Kaul
Communications Officer
yvonne.kaul@embo.org

Céline Carret
Editor, EMBO Molecular Medicine
Tel: +49 6221 8891 411
celine.carret@embo.org

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. 
For more information: www.embo.org

Weitere Informationen:

http://www.embo.org/news/research-news/research-news-2016/wbp2-is-a-novel-gene-i...

Yvonne Kaul | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>