Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New ways to disarm deadly South American hemorrhagic fever viruses

New World hemorrhagic fevers are emerging infectious diseases found in South America that can cause terrible, Ebola-like symptoms. Current treatments are expensive and only partially effective.

Now, Howard Hughes Medical Institute (HHMI) researchers have discovered exactly how one type of New World hemorrhagic fever virus latches onto and infects human cells, offering a much-needed lead toward new treatments.

"New World hemorrhagic fevers are nasty, serious, and often fatal diseases," says Stephen C. Harrison, an HHMI investigator at Harvard Medical School and senior author of the report, published March 7, 2010, in Nature Structural & Molecular Biology. "The need for new interventions is high."

Arenaviruses, the infectious agents that cause New World hemorrhagic fevers, circulate naturally in rodents and can infect people who are in close contact with the animals. Symptoms include severe inflammation and bleeding from the mouth, nose, eyes, and other orifices. Most outbreaks occur in rural regions of Bolivia, Venezuela, Argentina, and Brazil. "The outbreaks of New World hemorrhagic fever tend to be brief and brutal, with mortality rates of 20 to 30 percent," says Jonathan Abraham, an M.D./Ph.D. candidate at Harvard University and first author of the paper. "These viruses aren't a huge public health issue yet, but you could say the New World hemorrhagic fevers are an emerging disease threat."

Researchers have known about these viruses since the 1960s, but the molecular basis of the disease has only been tackled recently, says Abraham, whose graduate studies are funded by HHMI through a Gilliam Fellowship for Advanced Study. The Gilliam Fellowships program currently supports the doctoral education of 30 exceptional students from disadvantaged backgrounds.

In 2007, Abraham was working with Boston Children's Hospital virologist Hyeryun Choe when he was co-first author on a report in Nature identifying the human cell surface receptor that the Machupo virus, an arenavirus, grabs to gain access to the human cell it is infecting. The receptor, called transferrin receptor 1, offers a handhold for Machupo virus as it invades cells in the body. Nearly every human cell displays the transferrin receptor, which ferries iron into cells.

Abraham then brought the project to Harrison, who had mentored the young scientist in 2004 as part of HHMI's Exceptional Research Opportunities Program (EXROP), which places undergraduate students from disadvantaged backgrounds in the laboratories of HHMI investigators and HHMI professors. The pairing was fortuitous. In Choe's laboratory, Abraham had developed methods to produce the Machupo virus surface protein, which links to the human transferrin receptor. Meanwhile, Harrison had stocks of purified transferrin receptor because he had previously worked to image the molecule and understood its molecular structure.

Together, the pair made batches of the Machupo surface protein bound to the transferrin receptor and then set about creating an image showing how the two molecules connected. They used x-ray crystallography, a technique in which protein crystals are bombarded with x-ray beams. As the x-rays pass through and bounce off of atoms in the crystal, they produce a diffraction pattern, which can then be analyzed to determine the three-dimensional shape of the protein. After a data collection trip to the powerful x-ray beam at Argonne National Laboratory in Illinois, Abraham and Harrison were able to examine the atomic structure of the Machupo surface protein attached to the transferrin receptor.

The images show that the Machupo surface protein binds to the transferrin receptor in a surprising way—using a loop called the apical domain. The biological function of this loop in humans is unknown, Harrison says. Other segments of the receptor bind iron-bearing transferrin, but the apical domain appears to be uninvolved in that process. "We don't know the normal function of the apical domain. Obviously it didn't evolve just to give Machupo virus a way to infect humans, but that's what the virus has evolved to latch onto," he says.

Because the apical domain is not involved in the critical task of moving iron into cells, Harrison says it presents an attractive target for drugs. In theory, an antibody designed to attach to the apical domain would prevent the Machupo virus from attaching to cells, blocking infection. One possible treatment strategy, then, would be to infuse patients with such an antibody during the early stages of infection, which might slow the infection enough to let patients recover.

Harrison says the finding might also help virologists predict which of the 22 known arenaviruses might be capable of infecting humans. Only five are known to infect humans now—and all of those bind to the human transferrin receptor. Presumably the other 17 viruses produce surface proteins that are unable to bind to the human transferrin receptor, Harrison says.

For Abraham, the idea of finding a treatment for these New World hemorrhagic fevers is close to his heart. His family hails from Haiti, where there is a "huge burden of infectious diseases. I'd like to dedicate my career to studying pathogens in underserved parts of the world," he says.

Andrea Widener | EurekAlert!
Further information:

Further reports about: HHMI Medical Wellness Nature Immunology hemorrhagic fever human cell

More articles from Life Sciences:

nachricht How Does Friendly Fire Happen in the Pancreas?
21.10.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>