Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to disarm deadly South American hemorrhagic fever viruses

09.03.2010
New World hemorrhagic fevers are emerging infectious diseases found in South America that can cause terrible, Ebola-like symptoms. Current treatments are expensive and only partially effective.

Now, Howard Hughes Medical Institute (HHMI) researchers have discovered exactly how one type of New World hemorrhagic fever virus latches onto and infects human cells, offering a much-needed lead toward new treatments.

"New World hemorrhagic fevers are nasty, serious, and often fatal diseases," says Stephen C. Harrison, an HHMI investigator at Harvard Medical School and senior author of the report, published March 7, 2010, in Nature Structural & Molecular Biology. "The need for new interventions is high."

Arenaviruses, the infectious agents that cause New World hemorrhagic fevers, circulate naturally in rodents and can infect people who are in close contact with the animals. Symptoms include severe inflammation and bleeding from the mouth, nose, eyes, and other orifices. Most outbreaks occur in rural regions of Bolivia, Venezuela, Argentina, and Brazil. "The outbreaks of New World hemorrhagic fever tend to be brief and brutal, with mortality rates of 20 to 30 percent," says Jonathan Abraham, an M.D./Ph.D. candidate at Harvard University and first author of the paper. "These viruses aren't a huge public health issue yet, but you could say the New World hemorrhagic fevers are an emerging disease threat."

Researchers have known about these viruses since the 1960s, but the molecular basis of the disease has only been tackled recently, says Abraham, whose graduate studies are funded by HHMI through a Gilliam Fellowship for Advanced Study. The Gilliam Fellowships program currently supports the doctoral education of 30 exceptional students from disadvantaged backgrounds.

In 2007, Abraham was working with Boston Children's Hospital virologist Hyeryun Choe when he was co-first author on a report in Nature identifying the human cell surface receptor that the Machupo virus, an arenavirus, grabs to gain access to the human cell it is infecting. The receptor, called transferrin receptor 1, offers a handhold for Machupo virus as it invades cells in the body. Nearly every human cell displays the transferrin receptor, which ferries iron into cells.

Abraham then brought the project to Harrison, who had mentored the young scientist in 2004 as part of HHMI's Exceptional Research Opportunities Program (EXROP), which places undergraduate students from disadvantaged backgrounds in the laboratories of HHMI investigators and HHMI professors. The pairing was fortuitous. In Choe's laboratory, Abraham had developed methods to produce the Machupo virus surface protein, which links to the human transferrin receptor. Meanwhile, Harrison had stocks of purified transferrin receptor because he had previously worked to image the molecule and understood its molecular structure.

Together, the pair made batches of the Machupo surface protein bound to the transferrin receptor and then set about creating an image showing how the two molecules connected. They used x-ray crystallography, a technique in which protein crystals are bombarded with x-ray beams. As the x-rays pass through and bounce off of atoms in the crystal, they produce a diffraction pattern, which can then be analyzed to determine the three-dimensional shape of the protein. After a data collection trip to the powerful x-ray beam at Argonne National Laboratory in Illinois, Abraham and Harrison were able to examine the atomic structure of the Machupo surface protein attached to the transferrin receptor.

The images show that the Machupo surface protein binds to the transferrin receptor in a surprising way—using a loop called the apical domain. The biological function of this loop in humans is unknown, Harrison says. Other segments of the receptor bind iron-bearing transferrin, but the apical domain appears to be uninvolved in that process. "We don't know the normal function of the apical domain. Obviously it didn't evolve just to give Machupo virus a way to infect humans, but that's what the virus has evolved to latch onto," he says.

Because the apical domain is not involved in the critical task of moving iron into cells, Harrison says it presents an attractive target for drugs. In theory, an antibody designed to attach to the apical domain would prevent the Machupo virus from attaching to cells, blocking infection. One possible treatment strategy, then, would be to infuse patients with such an antibody during the early stages of infection, which might slow the infection enough to let patients recover.

Harrison says the finding might also help virologists predict which of the 22 known arenaviruses might be capable of infecting humans. Only five are known to infect humans now—and all of those bind to the human transferrin receptor. Presumably the other 17 viruses produce surface proteins that are unable to bind to the human transferrin receptor, Harrison says.

For Abraham, the idea of finding a treatment for these New World hemorrhagic fevers is close to his heart. His family hails from Haiti, where there is a "huge burden of infectious diseases. I'd like to dedicate my career to studying pathogens in underserved parts of the world," he says.

Andrea Widener | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: HHMI Medical Wellness Nature Immunology hemorrhagic fever human cell

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>