Waxy plant substance key for absorption of water, nutrients

It has long been believed that suberin, a waxy substance between some plant cells, acts as a barrier for the movement of water in a plant's roots.

David E. Salt, a professor of plant molecular physiology, discovered a mutant form of the plant Arabidopsis – enhanced suberin 1 or ESB1 – with twice as much suberin as wild varieties, giving him a way to test the theory. The results of Salt's study were published Friday (May 22) in the early online version of the journal PLoS Genetics.

Salt also discovered which pathways particular nutrients use to get into a plant's shoots based on suberin concentration. By adjusting the amount of suberin in roots, Salt said plants could be engineered to allow for easier absorption of beneficial nutrients.

“This is the first time that the dogma in the textbooks has been tested genetically. It's been known for a long time that this material exists in the cell, but there's been no genetic proof to show what it does,” Salt said. “We now have another tool in our toolbox to manipulate how plants take up water and mineral nutrients.”

Using the plant with twice the amount of suberin, Salt showed that the plant activated a defense mechanism to keep from wilting. Since suberin was restricting water absorption, the plant allowed less transpiration, or evaporation of water from the leaves.

To further prove the theory, Salt was able to cut shoots off the wild-type plants and graft them onto mutant roots, and vice versa. The nutrient compositions in the shoots changed, reflecting the effect suberin in the roots had on the plants' absorption ability.

“You put a mutant root onto a wild-type shoot and the elemental composition in the wild-type shoot starts to look like a mutant shoot,” Salt said. “We saw the same thing with water loss.”

Some nutrients use a symplastic route, moving through cells' cytoplasm to gain access to the plant. Others use an apoplastic route, moving through the outer cell walls. The suberin acts as a filter, blocking some water from passing through cell walls. The more suberin, the more difficult it is for nutrients to pass through the cell walls.

“Just like animals, plants want to select the things they take in,” Salt said. “They want a certain amount of potassium or a certain amount of nitrogen. This allows them to choose how much they get.”

In Salt's experiments, the plants with more suberin had less calcium, manganese and zinc in their leaves, meaning a significant amount of those nutrients pass apoplastically through the root. Sodium, sulfur, selenium, molybdenum and arsenic showed higher concentrations, meaning they are generally absorbed symplastically.

The plants with more suberin – which decreased transpiration – used the water they were able to absorb more efficiently. Salt said plants could be genetically engineered for specific amounts of suberin so they would more easily absorb beneficial nutrients and use less water in a more efficient manner.

The National Science Foundation funded Salt's research. The next step is to determine the role of the ESB1 gene in suberin biosynthesis.

Abstract on the research in this release is available at: http://news.uns.purdue.edu/x/2009a/090522SaltSuberin.html

Media Contact

Brian Wallheimer EurekAlert!

More Information:

http://www.purdue.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors