Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Waxy plant substance key for absorption of water, nutrients

While proving a long-held theory that suberin blocks water and nutrient absorption in plants, a Purdue University scientist learned more about manipulating the substance to better feed plants.

It has long been believed that suberin, a waxy substance between some plant cells, acts as a barrier for the movement of water in a plant's roots.

David E. Salt, a professor of plant molecular physiology, discovered a mutant form of the plant Arabidopsis - enhanced suberin 1 or ESB1 - with twice as much suberin as wild varieties, giving him a way to test the theory. The results of Salt's study were published Friday (May 22) in the early online version of the journal PLoS Genetics.

Salt also discovered which pathways particular nutrients use to get into a plant's shoots based on suberin concentration. By adjusting the amount of suberin in roots, Salt said plants could be engineered to allow for easier absorption of beneficial nutrients.

"This is the first time that the dogma in the textbooks has been tested genetically. It's been known for a long time that this material exists in the cell, but there's been no genetic proof to show what it does," Salt said. "We now have another tool in our toolbox to manipulate how plants take up water and mineral nutrients."

Using the plant with twice the amount of suberin, Salt showed that the plant activated a defense mechanism to keep from wilting. Since suberin was restricting water absorption, the plant allowed less transpiration, or evaporation of water from the leaves.

To further prove the theory, Salt was able to cut shoots off the wild-type plants and graft them onto mutant roots, and vice versa. The nutrient compositions in the shoots changed, reflecting the effect suberin in the roots had on the plants' absorption ability.

"You put a mutant root onto a wild-type shoot and the elemental composition in the wild-type shoot starts to look like a mutant shoot," Salt said. "We saw the same thing with water loss."

Some nutrients use a symplastic route, moving through cells' cytoplasm to gain access to the plant. Others use an apoplastic route, moving through the outer cell walls. The suberin acts as a filter, blocking some water from passing through cell walls. The more suberin, the more difficult it is for nutrients to pass through the cell walls.

"Just like animals, plants want to select the things they take in," Salt said. "They want a certain amount of potassium or a certain amount of nitrogen. This allows them to choose how much they get."

In Salt's experiments, the plants with more suberin had less calcium, manganese and zinc in their leaves, meaning a significant amount of those nutrients pass apoplastically through the root. Sodium, sulfur, selenium, molybdenum and arsenic showed higher concentrations, meaning they are generally absorbed symplastically.

The plants with more suberin - which decreased transpiration - used the water they were able to absorb more efficiently. Salt said plants could be genetically engineered for specific amounts of suberin so they would more easily absorb beneficial nutrients and use less water in a more efficient manner.

The National Science Foundation funded Salt's research. The next step is to determine the role of the ESB1 gene in suberin biosynthesis.

Abstract on the research in this release is available at:

Brian Wallheimer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>