Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Waxy plant substance key for absorption of water, nutrients

While proving a long-held theory that suberin blocks water and nutrient absorption in plants, a Purdue University scientist learned more about manipulating the substance to better feed plants.

It has long been believed that suberin, a waxy substance between some plant cells, acts as a barrier for the movement of water in a plant's roots.

David E. Salt, a professor of plant molecular physiology, discovered a mutant form of the plant Arabidopsis - enhanced suberin 1 or ESB1 - with twice as much suberin as wild varieties, giving him a way to test the theory. The results of Salt's study were published Friday (May 22) in the early online version of the journal PLoS Genetics.

Salt also discovered which pathways particular nutrients use to get into a plant's shoots based on suberin concentration. By adjusting the amount of suberin in roots, Salt said plants could be engineered to allow for easier absorption of beneficial nutrients.

"This is the first time that the dogma in the textbooks has been tested genetically. It's been known for a long time that this material exists in the cell, but there's been no genetic proof to show what it does," Salt said. "We now have another tool in our toolbox to manipulate how plants take up water and mineral nutrients."

Using the plant with twice the amount of suberin, Salt showed that the plant activated a defense mechanism to keep from wilting. Since suberin was restricting water absorption, the plant allowed less transpiration, or evaporation of water from the leaves.

To further prove the theory, Salt was able to cut shoots off the wild-type plants and graft them onto mutant roots, and vice versa. The nutrient compositions in the shoots changed, reflecting the effect suberin in the roots had on the plants' absorption ability.

"You put a mutant root onto a wild-type shoot and the elemental composition in the wild-type shoot starts to look like a mutant shoot," Salt said. "We saw the same thing with water loss."

Some nutrients use a symplastic route, moving through cells' cytoplasm to gain access to the plant. Others use an apoplastic route, moving through the outer cell walls. The suberin acts as a filter, blocking some water from passing through cell walls. The more suberin, the more difficult it is for nutrients to pass through the cell walls.

"Just like animals, plants want to select the things they take in," Salt said. "They want a certain amount of potassium or a certain amount of nitrogen. This allows them to choose how much they get."

In Salt's experiments, the plants with more suberin had less calcium, manganese and zinc in their leaves, meaning a significant amount of those nutrients pass apoplastically through the root. Sodium, sulfur, selenium, molybdenum and arsenic showed higher concentrations, meaning they are generally absorbed symplastically.

The plants with more suberin - which decreased transpiration - used the water they were able to absorb more efficiently. Salt said plants could be genetically engineered for specific amounts of suberin so they would more easily absorb beneficial nutrients and use less water in a more efficient manner.

The National Science Foundation funded Salt's research. The next step is to determine the role of the ESB1 gene in suberin biosynthesis.

Abstract on the research in this release is available at:

Brian Wallheimer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>