Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wave Motion

20.07.2011
New Compounds for Molecule Interferometry Experiments

When waves meet, a new single wave is created. This phenomenon is well understood for mechanical waves such as sound, and electro-magnetic waves such as light, and the "interference" of light waves is applied in astronomy, fiber optics, and oceanography.

The observation that even individual large organic molecules can delocalize over large distance and interfere—not with each other, but each one with itself—is rather new, and its study requires suitable substances. A team of chemists led by Marcel Mayor at the Universität Basel has recently designed a new series of compounds that were successfully used for interferometry experiments by a group of experimental physicists headed by Markus Arndt at the Universität Wien, as they report in the European Journal of Organic Chemistry.

Chemical functionalization allows the properties of the molecules to be tailored to the needs of the experiments. To be compatible with interferometry, compounds must be highly volatile, stable, and easily ionized. In order to understand the transition between quantum and classical mechanics, it is important to study molecules of increasing mass. The first two criteria can be met by highly fluorinated compounds. To meet the requirements of a high molecular mass and good detectability, the authors judiciously paired the fluorinated moieties to a porphyrin core.

The team presented a modular synthesis of seven fluorinated porphyrins. The aim of the authors was to cover a specific mass range and to optimize the design of the structures towards high volatility; their resulting synthetic strategy is straightforward and easily applied. The fluorine components are coupled to the outer parts of the porphyrins in the last step of the synthesis. They can thus be easily modified to fine-tune the interferometry experiments. Despite the high fluorine content of the porphyrins, these compounds could still be produced by established organic synthesis protocols.

The researchers showed that at least one of their prepared compounds met the criteria for thermal evaporation and stability, and the team plans to adopt the modular synthesis technique reported for the design of more specific, mass-limited, sublimable organic dyes for future molecule interferometry experiments.

Author: Marcel Mayor, Universität Basel (Switzerland), http://www.chemie.unibas.ch/%7emayor/

Title: Highly Fluorous Porphyrins as Model Compounds for Molecule Interferometry
European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201100638

Marcel Mayor | Wiley-VCH
Further information:
http://www.chemie.unibas.ch/%7emayor/
http://dx.doi.org/10.1002/ejoc.201100638
http://www.wiley-vch.de

Further reports about: CHEMISTRY Molecule Organic Wave compounds organic molecule

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>