Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wave Motion

20.07.2011
New Compounds for Molecule Interferometry Experiments

When waves meet, a new single wave is created. This phenomenon is well understood for mechanical waves such as sound, and electro-magnetic waves such as light, and the "interference" of light waves is applied in astronomy, fiber optics, and oceanography.

The observation that even individual large organic molecules can delocalize over large distance and interfere—not with each other, but each one with itself—is rather new, and its study requires suitable substances. A team of chemists led by Marcel Mayor at the Universität Basel has recently designed a new series of compounds that were successfully used for interferometry experiments by a group of experimental physicists headed by Markus Arndt at the Universität Wien, as they report in the European Journal of Organic Chemistry.

Chemical functionalization allows the properties of the molecules to be tailored to the needs of the experiments. To be compatible with interferometry, compounds must be highly volatile, stable, and easily ionized. In order to understand the transition between quantum and classical mechanics, it is important to study molecules of increasing mass. The first two criteria can be met by highly fluorinated compounds. To meet the requirements of a high molecular mass and good detectability, the authors judiciously paired the fluorinated moieties to a porphyrin core.

The team presented a modular synthesis of seven fluorinated porphyrins. The aim of the authors was to cover a specific mass range and to optimize the design of the structures towards high volatility; their resulting synthetic strategy is straightforward and easily applied. The fluorine components are coupled to the outer parts of the porphyrins in the last step of the synthesis. They can thus be easily modified to fine-tune the interferometry experiments. Despite the high fluorine content of the porphyrins, these compounds could still be produced by established organic synthesis protocols.

The researchers showed that at least one of their prepared compounds met the criteria for thermal evaporation and stability, and the team plans to adopt the modular synthesis technique reported for the design of more specific, mass-limited, sublimable organic dyes for future molecule interferometry experiments.

Author: Marcel Mayor, Universität Basel (Switzerland), http://www.chemie.unibas.ch/%7emayor/

Title: Highly Fluorous Porphyrins as Model Compounds for Molecule Interferometry
European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201100638

Marcel Mayor | Wiley-VCH
Further information:
http://www.chemie.unibas.ch/%7emayor/
http://dx.doi.org/10.1002/ejoc.201100638
http://www.wiley-vch.de

Further reports about: CHEMISTRY Molecule Organic Wave compounds organic molecule

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>