Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water-powered reactions

29.06.2009
An international team, led by Shingo Nagano from the RIKEN SPring-8 Center in Harima and Hiroyasu Onaka from Toyama Prefectural University, has uncovered the vital role of water in the generation of the antitumor drug staurosporine (1).

The researchers mainly focus on the enzyme P450 StaP, which belongs to the cytochrome P450 enzyme family. These enzymes are involved in metabolic and biosynthetic reactions, including the activation and degradation of drugs in humans, and the synthesis of medically relevant natural products.

P450 StaP’s active site consists of a sulfur-bound iron atom enclosed in a large hydrocarbon ring called heme. It catalyzes the oxidation of a five-ring compound called chromopyrrolic acid (CPA) and facilitates the formation of an intramolecular carbon–carbon bond to generate a six-ring staurosporine precursor. This carbon–carbon bond formation is unusual for P450 enzymes, which typically insert an oxygen atom into bonds. The researchers demonstrated that water molecules mediate this carbon–carbon coupling.

Nagano and co-workers had previously revealed that strong interactions held CPA tightly in a binding pocket, modulating proton and electron transfer reactions between substrate and enzyme. However, they observed that those interactions kept the substrate away from the heme oxygen, impeding any direct contact, and thus proton transfer, between the two species.

In their latest work, they mutated the enzyme by replacing a residue positioned between the two water molecules with hydrocarbons, which significantly decreased its activity. They also substituted CPA with a chlorine-containing compound (CCA) and discovered that the chlorine atom prevented water molecules from approaching the heme. Further, they observed decreased activity in presence of CCA, highlighting the importance of water in the mechanism.

“CCA is very poor substrate but we had no idea why this happens,” says Nagano. Since his collaborator proposed that this water molecule was very likely to be a key player in this enzyme catalysis, they ran a detailed computational investigation. They found that two water molecules in the enzyme active site acted as a proton relay between CPA and the heme.

“Similar water-assisted proton transfer between heme and substrate is also found in horseradish peroxidase (HRP), another heme enzyme,” explains Nagano. “The natural substrate-bound HRP has a water molecule close to the substrate and heme as we have observed in CPA-bound P450 StaP.” The researchers’ ultimate goal is to transpose this carbon–carbon coupling to other P450 enzymes and generate new staurosporine-like therapeutic agents.

Reference

1. Wang, Y., Chen, H., Makino, M., Shiro, Y., Nagano, S., Asamizu, S., Onaka, H. & Shaik, S. Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules. Journal of the American Chemical Society 131, 6748–6762 (2009).

The corresponding author for this highlight is based at the RIKEN Photon Science Research Division, Biometal Science Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/731/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>