Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water-powered reactions

29.06.2009
An international team, led by Shingo Nagano from the RIKEN SPring-8 Center in Harima and Hiroyasu Onaka from Toyama Prefectural University, has uncovered the vital role of water in the generation of the antitumor drug staurosporine (1).

The researchers mainly focus on the enzyme P450 StaP, which belongs to the cytochrome P450 enzyme family. These enzymes are involved in metabolic and biosynthetic reactions, including the activation and degradation of drugs in humans, and the synthesis of medically relevant natural products.

P450 StaP’s active site consists of a sulfur-bound iron atom enclosed in a large hydrocarbon ring called heme. It catalyzes the oxidation of a five-ring compound called chromopyrrolic acid (CPA) and facilitates the formation of an intramolecular carbon–carbon bond to generate a six-ring staurosporine precursor. This carbon–carbon bond formation is unusual for P450 enzymes, which typically insert an oxygen atom into bonds. The researchers demonstrated that water molecules mediate this carbon–carbon coupling.

Nagano and co-workers had previously revealed that strong interactions held CPA tightly in a binding pocket, modulating proton and electron transfer reactions between substrate and enzyme. However, they observed that those interactions kept the substrate away from the heme oxygen, impeding any direct contact, and thus proton transfer, between the two species.

In their latest work, they mutated the enzyme by replacing a residue positioned between the two water molecules with hydrocarbons, which significantly decreased its activity. They also substituted CPA with a chlorine-containing compound (CCA) and discovered that the chlorine atom prevented water molecules from approaching the heme. Further, they observed decreased activity in presence of CCA, highlighting the importance of water in the mechanism.

“CCA is very poor substrate but we had no idea why this happens,” says Nagano. Since his collaborator proposed that this water molecule was very likely to be a key player in this enzyme catalysis, they ran a detailed computational investigation. They found that two water molecules in the enzyme active site acted as a proton relay between CPA and the heme.

“Similar water-assisted proton transfer between heme and substrate is also found in horseradish peroxidase (HRP), another heme enzyme,” explains Nagano. “The natural substrate-bound HRP has a water molecule close to the substrate and heme as we have observed in CPA-bound P450 StaP.” The researchers’ ultimate goal is to transpose this carbon–carbon coupling to other P450 enzymes and generate new staurosporine-like therapeutic agents.

Reference

1. Wang, Y., Chen, H., Makino, M., Shiro, Y., Nagano, S., Asamizu, S., Onaka, H. & Shaik, S. Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules. Journal of the American Chemical Society 131, 6748–6762 (2009).

The corresponding author for this highlight is based at the RIKEN Photon Science Research Division, Biometal Science Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/731/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>