Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water leads to chemical that gunks up biofuels production

21.08.2014

Study shows water trips up key chemical reactions that turn plants into fuels, provides scientific principles that can speed up biofuel development

Trying to understand the chemistry that turns plant material into the same energy-rich gasoline and diesel we put in our vehicles, researchers have discovered that water in the conversion process helps form an impurity which, in turn, slows down key chemical reactions. The study, which was reported online at the Journal of the American Chemical Society in July, can help improve processes that produce biofuels from plants.


Planting roots

Bio-oil (right) is produced from biomass (left) through a process called fast pyrolysis.

The study examines the conversion of bio-oil, produced from biomass such as wood chips or grasses, into transportation fuels. Researchers used computer simulations to explore what happens to a common bio-oil byproduct. Water, everywhere during biofuels production, turns the byproduct into an impurity that disrupts and blocks the reactions that lead to biofuels. The results apply not only to water but to related liquids in bio-oil such as alcohols and certain acids.

The study provides a thorough view of the byproduct phenol reacting with catalysts. Catalysts are what chemists use to speed up the reactions that convert plants into fuels, reactions that occurred deep in the Earth over millions of years and gave us the fossil fuels we use today.

"We are getting to the heart of the fundamentals of biofuels catalysis," said co-author Roger Rousseau, a scientist at the Department of Energy's Pacific Northwest National Laboratory. "The work tells us that the impurity is unavoidable and we need to make sure it does not build up enough to interfere. Although this is a very fundamental issue, it points out for us what types of things we can do to help extend the lifetime of the catalysts we are using to make bio-oil."

Grass To Gasoline

To make plant matter into products that come from petroleum — gasoline and plastics — biofuels chemists need to understand every step of the process. To make biofuels, researchers rapidly heat up plant matter in a process called pyrolysis. They then use catalysts to convert the pyrolysis oil into transportation fuels.

The chemistry that occurs leads to the production of precursors to fuels and a byproduct called phenol. Phenol itself isn't too much of a problem in fuels, but it sits in the vat of chemicals and water that are undergoing a variety of reactions and gets converted into molecules called ketones.

Troublesome ketones will link up with others like them and form long chains that gunk up the catalysts and interfere with important reactions. Researchers at PNNL wanted to know the molecular details on how phenol converts to ketone. Ultimately, they discovered, it's not the catalyst's fault.

Catalyst in the Computer

While some ideas existed for how this happens, the team used computers to simulate phenol interacting with catalysts and water to see step-by-step what is going on. To explore water's role in the reaction, they also simulated the same reactions in a vacuum, which puts everything but the solid catalyst in vapor form. They performed these simulations using resources in EMSL, DOE's Environmental Molecular Sciences Laboratory at PNNL.

In the simulations, the catalyst is essentially a piece of metal, either nickel or platinum. The phenol molecules and water molecules randomly bounce or land on the metal surface where bonds break and reform between atoms within molecules by shifting electrons around. In this way, a phenol might transform into a ketone.

The team found that the presence of water dramatically upped the speed with which the final conversion to a ketone happened. In addition, water also affected how the metal catalyst carried its electrons, which in turn affected how well it catalyzed the reaction between phenol and hydrogen atoms that settle on the catalyst's surface.

"I was surprised at the role liquid plays in the reactivity of the metal catalyst," said PNNL's Yeohoon Yoon, a co-author on the study. "We know a lot about these reactions in the gas phase, but almost nothing in the liquid. The principles we've learned can be applied to other catalyst-driven reactions. They will make working in the complex system of real catalysts making real biofuels easier."

And that's the next step. PNNL colleagues at the Bioproducts, Sciences & Engineering Laboratory, a facility located on the Washington State University Tri-Cities campus where PNNL and WSU researchers collaborate, will use this work to guide development of pyrolysis oil transformation into biofuels.

The researchers also presented this work at the American Chemical Society's Annual Meeting in San Francisco on Aug. 12.

This work was supported by the Department of Energy Offices of Science and Energy Efficiency and Renewable Energy.

Reference: Yeohoon Yoon, Roger Rousseau, Robert S. Weber, Donghai Mei, and Johannes A. Lercher. First-principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase, J. Am. Chem. Soc., July 2, 2014, DOI: 10.1021/ja501592y.

Tags: Energy, Fundamental Science, Computational Science, EMSL, Biomass, Renewable Energy, Biofuel, Green Energy, Energy Production, Chemistry, Catalysis, Supercomputer, Software

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science.  Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of about $950 million. It is managed by Battelle for the U.S. Department of Energy’s Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

Mary Beckman | Eurek Alert!

Further reports about: Chemical Energy Environmental Laboratory Molecular PNNL Phenol Science Sciences Water fuels

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>