Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What water looks like to DNA

20.11.2013
New computational method described in the Journal of Chemical Physics allows researchers to predict how biological molecules interact with water

A team of biochemists and mathematicians have developed a sophisticated geometric model to predict how a biological molecule will interact with water molecules, computing the results up to 20 times faster than other existing approaches.


These are snapshots from numerical relaxation of the two-plate system. A red region indicates the solute region without solvent.

Credit: Reproduced from the Journal of Chemical Physics. See: http://dx.doi.org/10.1063/1.4812839

This new approach may help researchers find new drugs to treat human diseases, said the team, who described their theoretical approach in the Journal of Chemical Physics, which is produced by AIP Publishing.

"Our research explores how water can change the shape of a molecule, how different molecules can get along well in water and, ultimately, how drug molecules can hit targets with the help of water," says Bo Li, professor of mathematics and senior scientist, National Science Foundation Center for Theoretical Biological Physics, University of California, San Diego.

Biological molecules such as DNA and proteins are the building blocks of living systems, and each molecule consists of many atoms. "How these molecules self-organize is crucial to maintaining a healthy system, because a missing or deformed atom within a molecule can lead to disease," explained Li.

The human body contains numerous biological molecules, many of which are surrounded by water, which can help change their shape and affect how they interact with other molecules in the body. Up to 60 percent of the human body is water, so it's essential that this solvent be considered.

"Many biological molecules are hydrophobic (water repelling), just like a drop of oil in water, but when mixed they will eventually blend together," said Li.

Being able to quickly predict the structure of biological molecules in water by using this new theoretical approach should help improve the ability of researchers to identify new targets and may reduce the need for expensive screening of millions of drug molecules in labs.

This work is part of a joint research program initiated in the lab of J. Andrew McCammon, Joseph E. Mayer Professor of Theoretical Chemistry, Distinguished Professor of Pharmacology, and Howard Hughes Medical Institute (HHMI), University of California, San Diego, and has been supported by a grant from the National Institutes of Health and HHMI.

The article, "Phase-Field Approach to Implicit Solvation of Biomolecules with Coulomb-Field Approximation," authored by Yanxiang Zhao, Yuen-Yick Kwan, Jianwei Che, Bo Li, and J.A. McCammon, is published in the Journal of Chemical Physics. See: http://dx.doi.org/10.1063/1.4812839

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>